Computing the gluon Sivers function at small-x
We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regime...
Ausführliche Beschreibung
Autor*in: |
Yao, Xiaojun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Applying the Go/NoGo processing schema to a visual oddball task in older adults - Steiner, Genevieve Z. ELSEVIER, 2016, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:790 ; year:2019 ; day:10 ; month:03 ; pages:361-366 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.physletb.2019.01.029 |
---|
Katalog-ID: |
ELV045963193 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV045963193 | ||
003 | DE-627 | ||
005 | 20230626012750.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191021s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.physletb.2019.01.029 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000978.pica |
035 | |a (DE-627)ELV045963193 | ||
035 | |a (ELSEVIER)S0370-2693(19)30045-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 77.50 |2 bkl | ||
100 | 1 | |a Yao, Xiaojun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computing the gluon Sivers function at small-x |
264 | 1 | |c 2019transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. | ||
520 | |a We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. | ||
700 | 1 | |a Hagiwara, Yoshikazu |4 oth | |
700 | 1 | |a Hatta, Yoshitaka |4 oth | |
773 | 0 | 8 | |i Enthalten in |n North-Holland Publ |a Steiner, Genevieve Z. ELSEVIER |t Applying the Go/NoGo processing schema to a visual oddball task in older adults |d 2016 |g Amsterdam |w (DE-627)ELV000151122 |
773 | 1 | 8 | |g volume:790 |g year:2019 |g day:10 |g month:03 |g pages:361-366 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.physletb.2019.01.029 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 77.50 |j Psychophysiologie |q VZ |
951 | |a AR | ||
952 | |d 790 |j 2019 |b 10 |c 0310 |h 361-366 |g 6 |
author_variant |
x y xy |
---|---|
matchkey_str |
yaoxiaojunhagiwarayoshikazuhattayoshitak:2019----:optntelosvrfn |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
77.50 |
publishDate |
2019 |
allfields |
10.1016/j.physletb.2019.01.029 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000978.pica (DE-627)ELV045963193 (ELSEVIER)S0370-2693(19)30045-0 DE-627 ger DE-627 rakwb eng 610 VZ 77.50 bkl Yao, Xiaojun verfasserin aut Computing the gluon Sivers function at small-x 2019transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. Hagiwara, Yoshikazu oth Hatta, Yoshitaka oth Enthalten in North-Holland Publ Steiner, Genevieve Z. ELSEVIER Applying the Go/NoGo processing schema to a visual oddball task in older adults 2016 Amsterdam (DE-627)ELV000151122 volume:790 year:2019 day:10 month:03 pages:361-366 extent:6 https://doi.org/10.1016/j.physletb.2019.01.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 77.50 Psychophysiologie VZ AR 790 2019 10 0310 361-366 6 |
spelling |
10.1016/j.physletb.2019.01.029 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000978.pica (DE-627)ELV045963193 (ELSEVIER)S0370-2693(19)30045-0 DE-627 ger DE-627 rakwb eng 610 VZ 77.50 bkl Yao, Xiaojun verfasserin aut Computing the gluon Sivers function at small-x 2019transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. Hagiwara, Yoshikazu oth Hatta, Yoshitaka oth Enthalten in North-Holland Publ Steiner, Genevieve Z. ELSEVIER Applying the Go/NoGo processing schema to a visual oddball task in older adults 2016 Amsterdam (DE-627)ELV000151122 volume:790 year:2019 day:10 month:03 pages:361-366 extent:6 https://doi.org/10.1016/j.physletb.2019.01.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 77.50 Psychophysiologie VZ AR 790 2019 10 0310 361-366 6 |
allfields_unstemmed |
10.1016/j.physletb.2019.01.029 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000978.pica (DE-627)ELV045963193 (ELSEVIER)S0370-2693(19)30045-0 DE-627 ger DE-627 rakwb eng 610 VZ 77.50 bkl Yao, Xiaojun verfasserin aut Computing the gluon Sivers function at small-x 2019transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. Hagiwara, Yoshikazu oth Hatta, Yoshitaka oth Enthalten in North-Holland Publ Steiner, Genevieve Z. ELSEVIER Applying the Go/NoGo processing schema to a visual oddball task in older adults 2016 Amsterdam (DE-627)ELV000151122 volume:790 year:2019 day:10 month:03 pages:361-366 extent:6 https://doi.org/10.1016/j.physletb.2019.01.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 77.50 Psychophysiologie VZ AR 790 2019 10 0310 361-366 6 |
allfieldsGer |
10.1016/j.physletb.2019.01.029 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000978.pica (DE-627)ELV045963193 (ELSEVIER)S0370-2693(19)30045-0 DE-627 ger DE-627 rakwb eng 610 VZ 77.50 bkl Yao, Xiaojun verfasserin aut Computing the gluon Sivers function at small-x 2019transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. Hagiwara, Yoshikazu oth Hatta, Yoshitaka oth Enthalten in North-Holland Publ Steiner, Genevieve Z. ELSEVIER Applying the Go/NoGo processing schema to a visual oddball task in older adults 2016 Amsterdam (DE-627)ELV000151122 volume:790 year:2019 day:10 month:03 pages:361-366 extent:6 https://doi.org/10.1016/j.physletb.2019.01.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 77.50 Psychophysiologie VZ AR 790 2019 10 0310 361-366 6 |
allfieldsSound |
10.1016/j.physletb.2019.01.029 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000978.pica (DE-627)ELV045963193 (ELSEVIER)S0370-2693(19)30045-0 DE-627 ger DE-627 rakwb eng 610 VZ 77.50 bkl Yao, Xiaojun verfasserin aut Computing the gluon Sivers function at small-x 2019transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. Hagiwara, Yoshikazu oth Hatta, Yoshitaka oth Enthalten in North-Holland Publ Steiner, Genevieve Z. ELSEVIER Applying the Go/NoGo processing schema to a visual oddball task in older adults 2016 Amsterdam (DE-627)ELV000151122 volume:790 year:2019 day:10 month:03 pages:361-366 extent:6 https://doi.org/10.1016/j.physletb.2019.01.029 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 77.50 Psychophysiologie VZ AR 790 2019 10 0310 361-366 6 |
language |
English |
source |
Enthalten in Applying the Go/NoGo processing schema to a visual oddball task in older adults Amsterdam volume:790 year:2019 day:10 month:03 pages:361-366 extent:6 |
sourceStr |
Enthalten in Applying the Go/NoGo processing schema to a visual oddball task in older adults Amsterdam volume:790 year:2019 day:10 month:03 pages:361-366 extent:6 |
format_phy_str_mv |
Article |
bklname |
Psychophysiologie |
institution |
findex.gbv.de |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Applying the Go/NoGo processing schema to a visual oddball task in older adults |
authorswithroles_txt_mv |
Yao, Xiaojun @@aut@@ Hagiwara, Yoshikazu @@oth@@ Hatta, Yoshitaka @@oth@@ |
publishDateDaySort_date |
2019-01-10T00:00:00Z |
hierarchy_top_id |
ELV000151122 |
dewey-sort |
3610 |
id |
ELV045963193 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045963193</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626012750.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physletb.2019.01.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000978.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045963193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0370-2693(19)30045-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">77.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yao, Xiaojun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computing the gluon Sivers function at small-x</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hagiwara, Yoshikazu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hatta, Yoshitaka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ</subfield><subfield code="a">Steiner, Genevieve Z. ELSEVIER</subfield><subfield code="t">Applying the Go/NoGo processing schema to a visual oddball task in older adults</subfield><subfield code="d">2016</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000151122</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:790</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:10</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:361-366</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.physletb.2019.01.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">77.50</subfield><subfield code="j">Psychophysiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">790</subfield><subfield code="j">2019</subfield><subfield code="b">10</subfield><subfield code="c">0310</subfield><subfield code="h">361-366</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
author |
Yao, Xiaojun |
spellingShingle |
Yao, Xiaojun ddc 610 bkl 77.50 Computing the gluon Sivers function at small-x |
authorStr |
Yao, Xiaojun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000151122 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 77.50 bkl Computing the gluon Sivers function at small-x |
topic |
ddc 610 bkl 77.50 |
topic_unstemmed |
ddc 610 bkl 77.50 |
topic_browse |
ddc 610 bkl 77.50 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y h yh y h yh |
hierarchy_parent_title |
Applying the Go/NoGo processing schema to a visual oddball task in older adults |
hierarchy_parent_id |
ELV000151122 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Applying the Go/NoGo processing schema to a visual oddball task in older adults |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000151122 |
title |
Computing the gluon Sivers function at small-x |
ctrlnum |
(DE-627)ELV045963193 (ELSEVIER)S0370-2693(19)30045-0 |
title_full |
Computing the gluon Sivers function at small-x |
author_sort |
Yao, Xiaojun |
journal |
Applying the Go/NoGo processing schema to a visual oddball task in older adults |
journalStr |
Applying the Go/NoGo processing schema to a visual oddball task in older adults |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
361 |
author_browse |
Yao, Xiaojun |
container_volume |
790 |
physical |
6 |
class |
610 VZ 77.50 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yao, Xiaojun |
doi_str_mv |
10.1016/j.physletb.2019.01.029 |
dewey-full |
610 |
title_sort |
computing the gluon sivers function at small-x |
title_auth |
Computing the gluon Sivers function at small-x |
abstract |
We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. |
abstractGer |
We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. |
abstract_unstemmed |
We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Computing the gluon Sivers function at small-x |
url |
https://doi.org/10.1016/j.physletb.2019.01.029 |
remote_bool |
true |
author2 |
Hagiwara, Yoshikazu Hatta, Yoshitaka |
author2Str |
Hagiwara, Yoshikazu Hatta, Yoshitaka |
ppnlink |
ELV000151122 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.physletb.2019.01.029 |
up_date |
2024-07-06T18:57:48.096Z |
_version_ |
1803857185312079872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045963193</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626012750.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physletb.2019.01.029</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000978.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045963193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0370-2693(19)30045-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">77.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yao, Xiaojun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computing the gluon Sivers function at small-x</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We compute the gluon Sivers function f 1 T ⊥ g ( x , k ⊥ ) of the transversely polarized nucleon at small-x by exploiting the known connection between the dipole gluon Sivers function and the Odderon. We numerically solve the evolution equation for the Odderon both in the linear and nonlinear regimes. While we find that the x and k ⊥ dependences of the Sivers function do not factorize as a result of the quantum evolution, factorization breaking is not numerically significant, and is much milder than what one expects in the case of unpolarized TMDs. We also point out the possibility that, due to the presence of a node in the Sivers function, single spin asymmetry for open charm production in semi-inclusive deep inelastic scattering flips signs as the transverse momentum of D-mesons is varied. This can be tested at the future Electron–Ion Collider.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hagiwara, Yoshikazu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hatta, Yoshitaka</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ</subfield><subfield code="a">Steiner, Genevieve Z. ELSEVIER</subfield><subfield code="t">Applying the Go/NoGo processing schema to a visual oddball task in older adults</subfield><subfield code="d">2016</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000151122</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:790</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:10</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:361-366</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.physletb.2019.01.029</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">77.50</subfield><subfield code="j">Psychophysiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">790</subfield><subfield code="j">2019</subfield><subfield code="b">10</subfield><subfield code="c">0310</subfield><subfield code="h">361-366</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
score |
7.4003944 |