Numerical modeling of heat exchange and unsaturated–saturated flow in porous media
We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltr...
Ausführliche Beschreibung
Autor*in: |
Kačur, Jozef [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
13 |
---|
Übergeordnetes Werk: |
Enthalten in: Growth and welfare implications of sector-specific innovations - Güner, İlhan ELSEVIER, 2022, an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:77 ; year:2019 ; number:6 ; day:15 ; month:03 ; pages:1668-1680 ; extent:13 |
Links: |
---|
DOI / URN: |
10.1016/j.camwa.2018.06.009 |
---|
Katalog-ID: |
ELV045964696 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV045964696 | ||
003 | DE-627 | ||
005 | 20230626012753.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191021s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.camwa.2018.06.009 |2 doi | |
028 | 5 | 2 | |a GBV00000000000582.pica |
035 | |a (DE-627)ELV045964696 | ||
035 | |a (ELSEVIER)S0898-1221(18)30333-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |q VZ |
084 | |a 83.03 |2 bkl | ||
084 | |a 83.10 |2 bkl | ||
100 | 1 | |a Kačur, Jozef |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical modeling of heat exchange and unsaturated–saturated flow in porous media |
264 | 1 | |c 2019transfer abstract | |
300 | |a 13 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. | ||
520 | |a We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. | ||
650 | 7 | |a Porous media |2 Elsevier | |
650 | 7 | |a Heat and mass transport |2 Elsevier | |
650 | 7 | |a Heat exchange |2 Elsevier | |
650 | 7 | |a Model scaling |2 Elsevier | |
650 | 7 | |a Unsaturated flow |2 Elsevier | |
700 | 1 | |a Mihala, Patrik |4 oth | |
700 | 1 | |a Tóth, Michal |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Güner, İlhan ELSEVIER |t Growth and welfare implications of sector-specific innovations |d 2022 |d an international journal |g Amsterdam [u.a.] |w (DE-627)ELV008987521 |
773 | 1 | 8 | |g volume:77 |g year:2019 |g number:6 |g day:15 |g month:03 |g pages:1668-1680 |g extent:13 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.camwa.2018.06.009 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 83.03 |j Methoden und Techniken der Volkswirtschaft |q VZ |
936 | b | k | |a 83.10 |j Wirtschaftstheorie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 77 |j 2019 |e 6 |b 15 |c 0315 |h 1668-1680 |g 13 |
author_variant |
j k jk |
---|---|
matchkey_str |
kaurjozefmihalapatriktthmichal:2019----:ueiamdlnohaecagadnauaestr |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
83.03 83.10 |
publishDate |
2019 |
allfields |
10.1016/j.camwa.2018.06.009 doi GBV00000000000582.pica (DE-627)ELV045964696 (ELSEVIER)S0898-1221(18)30333-X DE-627 ger DE-627 rakwb eng 330 VZ 83.03 bkl 83.10 bkl Kačur, Jozef verfasserin aut Numerical modeling of heat exchange and unsaturated–saturated flow in porous media 2019transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. Porous media Elsevier Heat and mass transport Elsevier Heat exchange Elsevier Model scaling Elsevier Unsaturated flow Elsevier Mihala, Patrik oth Tóth, Michal oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:77 year:2019 number:6 day:15 month:03 pages:1668-1680 extent:13 https://doi.org/10.1016/j.camwa.2018.06.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 77 2019 6 15 0315 1668-1680 13 |
spelling |
10.1016/j.camwa.2018.06.009 doi GBV00000000000582.pica (DE-627)ELV045964696 (ELSEVIER)S0898-1221(18)30333-X DE-627 ger DE-627 rakwb eng 330 VZ 83.03 bkl 83.10 bkl Kačur, Jozef verfasserin aut Numerical modeling of heat exchange and unsaturated–saturated flow in porous media 2019transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. Porous media Elsevier Heat and mass transport Elsevier Heat exchange Elsevier Model scaling Elsevier Unsaturated flow Elsevier Mihala, Patrik oth Tóth, Michal oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:77 year:2019 number:6 day:15 month:03 pages:1668-1680 extent:13 https://doi.org/10.1016/j.camwa.2018.06.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 77 2019 6 15 0315 1668-1680 13 |
allfields_unstemmed |
10.1016/j.camwa.2018.06.009 doi GBV00000000000582.pica (DE-627)ELV045964696 (ELSEVIER)S0898-1221(18)30333-X DE-627 ger DE-627 rakwb eng 330 VZ 83.03 bkl 83.10 bkl Kačur, Jozef verfasserin aut Numerical modeling of heat exchange and unsaturated–saturated flow in porous media 2019transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. Porous media Elsevier Heat and mass transport Elsevier Heat exchange Elsevier Model scaling Elsevier Unsaturated flow Elsevier Mihala, Patrik oth Tóth, Michal oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:77 year:2019 number:6 day:15 month:03 pages:1668-1680 extent:13 https://doi.org/10.1016/j.camwa.2018.06.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 77 2019 6 15 0315 1668-1680 13 |
allfieldsGer |
10.1016/j.camwa.2018.06.009 doi GBV00000000000582.pica (DE-627)ELV045964696 (ELSEVIER)S0898-1221(18)30333-X DE-627 ger DE-627 rakwb eng 330 VZ 83.03 bkl 83.10 bkl Kačur, Jozef verfasserin aut Numerical modeling of heat exchange and unsaturated–saturated flow in porous media 2019transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. Porous media Elsevier Heat and mass transport Elsevier Heat exchange Elsevier Model scaling Elsevier Unsaturated flow Elsevier Mihala, Patrik oth Tóth, Michal oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:77 year:2019 number:6 day:15 month:03 pages:1668-1680 extent:13 https://doi.org/10.1016/j.camwa.2018.06.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 77 2019 6 15 0315 1668-1680 13 |
allfieldsSound |
10.1016/j.camwa.2018.06.009 doi GBV00000000000582.pica (DE-627)ELV045964696 (ELSEVIER)S0898-1221(18)30333-X DE-627 ger DE-627 rakwb eng 330 VZ 83.03 bkl 83.10 bkl Kačur, Jozef verfasserin aut Numerical modeling of heat exchange and unsaturated–saturated flow in porous media 2019transfer abstract 13 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. Porous media Elsevier Heat and mass transport Elsevier Heat exchange Elsevier Model scaling Elsevier Unsaturated flow Elsevier Mihala, Patrik oth Tóth, Michal oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:77 year:2019 number:6 day:15 month:03 pages:1668-1680 extent:13 https://doi.org/10.1016/j.camwa.2018.06.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 77 2019 6 15 0315 1668-1680 13 |
language |
English |
source |
Enthalten in Growth and welfare implications of sector-specific innovations Amsterdam [u.a.] volume:77 year:2019 number:6 day:15 month:03 pages:1668-1680 extent:13 |
sourceStr |
Enthalten in Growth and welfare implications of sector-specific innovations Amsterdam [u.a.] volume:77 year:2019 number:6 day:15 month:03 pages:1668-1680 extent:13 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Volkswirtschaft Wirtschaftstheorie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Porous media Heat and mass transport Heat exchange Model scaling Unsaturated flow |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
Growth and welfare implications of sector-specific innovations |
authorswithroles_txt_mv |
Kačur, Jozef @@aut@@ Mihala, Patrik @@oth@@ Tóth, Michal @@oth@@ |
publishDateDaySort_date |
2019-01-15T00:00:00Z |
hierarchy_top_id |
ELV008987521 |
dewey-sort |
3330 |
id |
ELV045964696 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045964696</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626012753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.camwa.2018.06.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000582.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045964696</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0898-1221(18)30333-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kačur, Jozef</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical modeling of heat exchange and unsaturated–saturated flow in porous media</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Porous media</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat and mass transport</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat exchange</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Model scaling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Unsaturated flow</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mihala, Patrik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tóth, Michal</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Güner, İlhan ELSEVIER</subfield><subfield code="t">Growth and welfare implications of sector-specific innovations</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008987521</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1668-1680</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.camwa.2018.06.009</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.03</subfield><subfield code="j">Methoden und Techniken der Volkswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.10</subfield><subfield code="j">Wirtschaftstheorie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">1668-1680</subfield><subfield code="g">13</subfield></datafield></record></collection>
|
author |
Kačur, Jozef |
spellingShingle |
Kačur, Jozef ddc 330 bkl 83.03 bkl 83.10 Elsevier Porous media Elsevier Heat and mass transport Elsevier Heat exchange Elsevier Model scaling Elsevier Unsaturated flow Numerical modeling of heat exchange and unsaturated–saturated flow in porous media |
authorStr |
Kačur, Jozef |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008987521 |
format |
electronic Article |
dewey-ones |
330 - Economics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
330 VZ 83.03 bkl 83.10 bkl Numerical modeling of heat exchange and unsaturated–saturated flow in porous media Porous media Elsevier Heat and mass transport Elsevier Heat exchange Elsevier Model scaling Elsevier Unsaturated flow Elsevier |
topic |
ddc 330 bkl 83.03 bkl 83.10 Elsevier Porous media Elsevier Heat and mass transport Elsevier Heat exchange Elsevier Model scaling Elsevier Unsaturated flow |
topic_unstemmed |
ddc 330 bkl 83.03 bkl 83.10 Elsevier Porous media Elsevier Heat and mass transport Elsevier Heat exchange Elsevier Model scaling Elsevier Unsaturated flow |
topic_browse |
ddc 330 bkl 83.03 bkl 83.10 Elsevier Porous media Elsevier Heat and mass transport Elsevier Heat exchange Elsevier Model scaling Elsevier Unsaturated flow |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p m pm m t mt |
hierarchy_parent_title |
Growth and welfare implications of sector-specific innovations |
hierarchy_parent_id |
ELV008987521 |
dewey-tens |
330 - Economics |
hierarchy_top_title |
Growth and welfare implications of sector-specific innovations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008987521 |
title |
Numerical modeling of heat exchange and unsaturated–saturated flow in porous media |
ctrlnum |
(DE-627)ELV045964696 (ELSEVIER)S0898-1221(18)30333-X |
title_full |
Numerical modeling of heat exchange and unsaturated–saturated flow in porous media |
author_sort |
Kačur, Jozef |
journal |
Growth and welfare implications of sector-specific innovations |
journalStr |
Growth and welfare implications of sector-specific innovations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
1668 |
author_browse |
Kačur, Jozef |
container_volume |
77 |
physical |
13 |
class |
330 VZ 83.03 bkl 83.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kačur, Jozef |
doi_str_mv |
10.1016/j.camwa.2018.06.009 |
dewey-full |
330 |
title_sort |
numerical modeling of heat exchange and unsaturated–saturated flow in porous media |
title_auth |
Numerical modeling of heat exchange and unsaturated–saturated flow in porous media |
abstract |
We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. |
abstractGer |
We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. |
abstract_unstemmed |
We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
6 |
title_short |
Numerical modeling of heat exchange and unsaturated–saturated flow in porous media |
url |
https://doi.org/10.1016/j.camwa.2018.06.009 |
remote_bool |
true |
author2 |
Mihala, Patrik Tóth, Michal |
author2Str |
Mihala, Patrik Tóth, Michal |
ppnlink |
ELV008987521 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.camwa.2018.06.009 |
up_date |
2024-07-06T18:58:10.240Z |
_version_ |
1803857208530698240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV045964696</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626012753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.camwa.2018.06.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000582.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV045964696</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0898-1221(18)30333-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kačur, Jozef</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical modeling of heat exchange and unsaturated–saturated flow in porous media</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">13</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We discuss the numerical modeling of heat and mass transport in unsaturated–saturated porous media. The heat is transported by infiltrated water underlying capillary and gravitation driven forces. Heat energy is governed by molecular diffusion, convection, dispersion and exchange between the infiltrated water and porous media matrix. An unsaturated–saturated flow is considered with boundary conditions reflecting the external driven forces. The presented mathematical model is motivated by analysis of hygrothermal isolation properties of facades. The main contribution is focused on the determination of model parameters including soil parameters, dispersion coefficients, thermal transmission coefficient, thermal conductivity of porous media matrix and external transmission coefficients. The used mathematical model does not include the vapor transport and its phase exchange with water due to vaporization and condensation. It will be the next step of our research. Thus, practical applications of our model are limited. The developed numerical method is a good candidate for solving corresponding inverse problems. Numerical experiments support our method.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Porous media</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat and mass transport</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat exchange</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Model scaling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Unsaturated flow</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mihala, Patrik</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tóth, Michal</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Güner, İlhan ELSEVIER</subfield><subfield code="t">Growth and welfare implications of sector-specific innovations</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008987521</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:77</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">day:15</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1668-1680</subfield><subfield code="g">extent:13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.camwa.2018.06.009</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.03</subfield><subfield code="j">Methoden und Techniken der Volkswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.10</subfield><subfield code="j">Wirtschaftstheorie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">77</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="b">15</subfield><subfield code="c">0315</subfield><subfield code="h">1668-1680</subfield><subfield code="g">13</subfield></datafield></record></collection>
|
score |
7.4017725 |