Tribological behavior of bioactive multi-material structures targeting orthopedic applications
The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these struct...
Ausführliche Beschreibung
Autor*in: |
Costa, M.M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules - Liu, Min-Jie ELSEVIER, 2016, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:94 ; year:2019 ; pages:193-200 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.jmbbm.2019.02.028 |
---|
Katalog-ID: |
ELV046421963 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV046421963 | ||
003 | DE-627 | ||
005 | 20230626013703.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191021s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmbbm.2019.02.028 |2 doi | |
028 | 5 | 2 | |a GBV00000000000585.pica |
035 | |a (DE-627)ELV046421963 | ||
035 | |a (ELSEVIER)S1751-6161(18)31156-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 52.43 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.42 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Costa, M.M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Tribological behavior of bioactive multi-material structures targeting orthopedic applications |
264 | 1 | |c 2019transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. | ||
520 | |a The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. | ||
650 | 7 | |a β-tricalcium phosphate |2 Elsevier | |
650 | 7 | |a Press and sintering |2 Elsevier | |
650 | 7 | |a Multi-material structures |2 Elsevier | |
650 | 7 | |a Hydroxyapatite |2 Elsevier | |
650 | 7 | |a Selective Laser Melting |2 Elsevier | |
650 | 7 | |a Ti6Al4V |2 Elsevier | |
700 | 1 | |a Bartolomeu, F. |4 oth | |
700 | 1 | |a Alves, N. |4 oth | |
700 | 1 | |a Silva, F.S. |4 oth | |
700 | 1 | |a Miranda, G. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Liu, Min-Jie ELSEVIER |t A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |d 2016 |g Amsterdam [u.a.] |w (DE-627)ELV009727671 |
773 | 1 | 8 | |g volume:94 |g year:2019 |g pages:193-200 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmbbm.2019.02.028 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 52.43 |j Kältetechnik |q VZ |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |q VZ |
936 | b | k | |a 52.42 |j Heizungstechnik |j Lüftungstechnik |j Klimatechnik |q VZ |
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 94 |j 2019 |h 193-200 |g 8 |
author_variant |
m c mc |
---|---|
matchkey_str |
costammbartolomeufalvesnsilvafsmirandag:2019----:rblgcleairfiatvmliaeiltutrsagtn |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
52.43 52.52 52.42 50.38 |
publishDate |
2019 |
allfields |
10.1016/j.jmbbm.2019.02.028 doi GBV00000000000585.pica (DE-627)ELV046421963 (ELSEVIER)S1751-6161(18)31156-1 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Costa, M.M. verfasserin aut Tribological behavior of bioactive multi-material structures targeting orthopedic applications 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. β-tricalcium phosphate Elsevier Press and sintering Elsevier Multi-material structures Elsevier Hydroxyapatite Elsevier Selective Laser Melting Elsevier Ti6Al4V Elsevier Bartolomeu, F. oth Alves, N. oth Silva, F.S. oth Miranda, G. oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:94 year:2019 pages:193-200 extent:8 https://doi.org/10.1016/j.jmbbm.2019.02.028 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 94 2019 193-200 8 |
spelling |
10.1016/j.jmbbm.2019.02.028 doi GBV00000000000585.pica (DE-627)ELV046421963 (ELSEVIER)S1751-6161(18)31156-1 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Costa, M.M. verfasserin aut Tribological behavior of bioactive multi-material structures targeting orthopedic applications 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. β-tricalcium phosphate Elsevier Press and sintering Elsevier Multi-material structures Elsevier Hydroxyapatite Elsevier Selective Laser Melting Elsevier Ti6Al4V Elsevier Bartolomeu, F. oth Alves, N. oth Silva, F.S. oth Miranda, G. oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:94 year:2019 pages:193-200 extent:8 https://doi.org/10.1016/j.jmbbm.2019.02.028 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 94 2019 193-200 8 |
allfields_unstemmed |
10.1016/j.jmbbm.2019.02.028 doi GBV00000000000585.pica (DE-627)ELV046421963 (ELSEVIER)S1751-6161(18)31156-1 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Costa, M.M. verfasserin aut Tribological behavior of bioactive multi-material structures targeting orthopedic applications 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. β-tricalcium phosphate Elsevier Press and sintering Elsevier Multi-material structures Elsevier Hydroxyapatite Elsevier Selective Laser Melting Elsevier Ti6Al4V Elsevier Bartolomeu, F. oth Alves, N. oth Silva, F.S. oth Miranda, G. oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:94 year:2019 pages:193-200 extent:8 https://doi.org/10.1016/j.jmbbm.2019.02.028 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 94 2019 193-200 8 |
allfieldsGer |
10.1016/j.jmbbm.2019.02.028 doi GBV00000000000585.pica (DE-627)ELV046421963 (ELSEVIER)S1751-6161(18)31156-1 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Costa, M.M. verfasserin aut Tribological behavior of bioactive multi-material structures targeting orthopedic applications 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. β-tricalcium phosphate Elsevier Press and sintering Elsevier Multi-material structures Elsevier Hydroxyapatite Elsevier Selective Laser Melting Elsevier Ti6Al4V Elsevier Bartolomeu, F. oth Alves, N. oth Silva, F.S. oth Miranda, G. oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:94 year:2019 pages:193-200 extent:8 https://doi.org/10.1016/j.jmbbm.2019.02.028 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 94 2019 193-200 8 |
allfieldsSound |
10.1016/j.jmbbm.2019.02.028 doi GBV00000000000585.pica (DE-627)ELV046421963 (ELSEVIER)S1751-6161(18)31156-1 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Costa, M.M. verfasserin aut Tribological behavior of bioactive multi-material structures targeting orthopedic applications 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. β-tricalcium phosphate Elsevier Press and sintering Elsevier Multi-material structures Elsevier Hydroxyapatite Elsevier Selective Laser Melting Elsevier Ti6Al4V Elsevier Bartolomeu, F. oth Alves, N. oth Silva, F.S. oth Miranda, G. oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:94 year:2019 pages:193-200 extent:8 https://doi.org/10.1016/j.jmbbm.2019.02.028 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 94 2019 193-200 8 |
language |
English |
source |
Enthalten in A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules Amsterdam [u.a.] volume:94 year:2019 pages:193-200 extent:8 |
sourceStr |
Enthalten in A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules Amsterdam [u.a.] volume:94 year:2019 pages:193-200 extent:8 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Thermische Energieerzeugung Wärmetechnik Heizungstechnik Lüftungstechnik Klimatechnik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
β-tricalcium phosphate Press and sintering Multi-material structures Hydroxyapatite Selective Laser Melting Ti6Al4V |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
authorswithroles_txt_mv |
Costa, M.M. @@aut@@ Bartolomeu, F. @@oth@@ Alves, N. @@oth@@ Silva, F.S. @@oth@@ Miranda, G. @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV009727671 |
dewey-sort |
3690 |
id |
ELV046421963 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV046421963</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626013703.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmbbm.2019.02.028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000585.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV046421963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1751-6161(18)31156-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Costa, M.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tribological behavior of bioactive multi-material structures targeting orthopedic applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">β-tricalcium phosphate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Press and sintering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multi-material structures</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydroxyapatite</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Selective Laser Melting</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ti6Al4V</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bartolomeu, F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alves, N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, F.S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miranda, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Min-Jie ELSEVIER</subfield><subfield code="t">A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules</subfield><subfield code="d">2016</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009727671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:94</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:193-200</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmbbm.2019.02.028</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">94</subfield><subfield code="j">2019</subfield><subfield code="h">193-200</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
author |
Costa, M.M. |
spellingShingle |
Costa, M.M. ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier β-tricalcium phosphate Elsevier Press and sintering Elsevier Multi-material structures Elsevier Hydroxyapatite Elsevier Selective Laser Melting Elsevier Ti6Al4V Tribological behavior of bioactive multi-material structures targeting orthopedic applications |
authorStr |
Costa, M.M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV009727671 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Tribological behavior of bioactive multi-material structures targeting orthopedic applications β-tricalcium phosphate Elsevier Press and sintering Elsevier Multi-material structures Elsevier Hydroxyapatite Elsevier Selective Laser Melting Elsevier Ti6Al4V Elsevier |
topic |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier β-tricalcium phosphate Elsevier Press and sintering Elsevier Multi-material structures Elsevier Hydroxyapatite Elsevier Selective Laser Melting Elsevier Ti6Al4V |
topic_unstemmed |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier β-tricalcium phosphate Elsevier Press and sintering Elsevier Multi-material structures Elsevier Hydroxyapatite Elsevier Selective Laser Melting Elsevier Ti6Al4V |
topic_browse |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier β-tricalcium phosphate Elsevier Press and sintering Elsevier Multi-material structures Elsevier Hydroxyapatite Elsevier Selective Laser Melting Elsevier Ti6Al4V |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
f b fb n a na f s fs g m gm |
hierarchy_parent_title |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
hierarchy_parent_id |
ELV009727671 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV009727671 |
title |
Tribological behavior of bioactive multi-material structures targeting orthopedic applications |
ctrlnum |
(DE-627)ELV046421963 (ELSEVIER)S1751-6161(18)31156-1 |
title_full |
Tribological behavior of bioactive multi-material structures targeting orthopedic applications |
author_sort |
Costa, M.M. |
journal |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
journalStr |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
193 |
author_browse |
Costa, M.M. |
container_volume |
94 |
physical |
8 |
class |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Costa, M.M. |
doi_str_mv |
10.1016/j.jmbbm.2019.02.028 |
dewey-full |
690 |
title_sort |
tribological behavior of bioactive multi-material structures targeting orthopedic applications |
title_auth |
Tribological behavior of bioactive multi-material structures targeting orthopedic applications |
abstract |
The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. |
abstractGer |
The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. |
abstract_unstemmed |
The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Tribological behavior of bioactive multi-material structures targeting orthopedic applications |
url |
https://doi.org/10.1016/j.jmbbm.2019.02.028 |
remote_bool |
true |
author2 |
Bartolomeu, F. Alves, N. Silva, F.S. Miranda, G. |
author2Str |
Bartolomeu, F. Alves, N. Silva, F.S. Miranda, G. |
ppnlink |
ELV009727671 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.jmbbm.2019.02.028 |
up_date |
2024-07-06T20:11:32.385Z |
_version_ |
1803861824515342336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV046421963</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626013703.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmbbm.2019.02.028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000585.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV046421963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1751-6161(18)31156-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Costa, M.M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tribological behavior of bioactive multi-material structures targeting orthopedic applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The following study proposes a multi-material solution in which Ti6Al4V cellular structures produced by Selective Laser Melting are impregnated with bioactive materials (hydroxyapatite or β-tricalcium phosphate) using press and sintering technique. To assess the tribological response of these structures, an alumina plate was used as a counterpart in a flat-on-flat reciprocating sliding test. Ti6Al4V cellular structures impregnated with bioactive materials displayed the highest wear resistance when compared with the unreinforced structures. Among the bioactive structures, Ti6Al4V cellular structures impregnated with βTCP were the ones with higher wear resistance, having the lowest weight loss. Hence, these structures are promising multifunctional solutions for load-bearing applications by gathering suitable mechanical properties (strength and stiffness); bioactive properties and in addition an improved wear performance.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">β-tricalcium phosphate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Press and sintering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multi-material structures</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydroxyapatite</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Selective Laser Melting</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ti6Al4V</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bartolomeu, F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alves, N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, F.S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miranda, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Min-Jie ELSEVIER</subfield><subfield code="t">A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules</subfield><subfield code="d">2016</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009727671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:94</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:193-200</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmbbm.2019.02.028</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">94</subfield><subfield code="j">2019</subfield><subfield code="h">193-200</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
score |
7.4019346 |