Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings
Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be...
Ausführliche Beschreibung
Autor*in: |
Grančič, B. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: A high efficiency solar steam generation system with using residual heat to enhance steam escape - Bai, Binglin ELSEVIER, 2020, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:367 ; year:2019 ; day:15 ; month:06 ; pages:341-348 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.surfcoat.2019.04.017 |
---|
Katalog-ID: |
ELV046422935 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV046422935 | ||
003 | DE-627 | ||
005 | 20230626013705.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191021s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.surfcoat.2019.04.017 |2 doi | |
028 | 5 | 2 | |a GBV00000000000629.pica |
035 | |a (DE-627)ELV046422935 | ||
035 | |a (ELSEVIER)S0257-8972(19)30382-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 690 |q VZ |
084 | |a 58.51 |2 bkl | ||
100 | 1 | |a Grančič, B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings |
264 | 1 | |c 2019transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. | ||
520 | |a Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. | ||
700 | 1 | |a Pleva, M. |4 oth | |
700 | 1 | |a Mikula, M. |4 oth | |
700 | 1 | |a Čaplovičová, M. |4 oth | |
700 | 1 | |a Satrapinskyy, L. |4 oth | |
700 | 1 | |a Roch, T. |4 oth | |
700 | 1 | |a Truchlý, M. |4 oth | |
700 | 1 | |a Sahul, M. |4 oth | |
700 | 1 | |a Gregor, M. |4 oth | |
700 | 1 | |a Švec, P. |4 oth | |
700 | 1 | |a Zahoran, M. |4 oth | |
700 | 1 | |a Kúš, P. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Bai, Binglin ELSEVIER |t A high efficiency solar steam generation system with using residual heat to enhance steam escape |d 2020 |g Amsterdam [u.a.] |w (DE-627)ELV004415906 |
773 | 1 | 8 | |g volume:367 |g year:2019 |g day:15 |g month:06 |g pages:341-348 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.surfcoat.2019.04.017 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 58.51 |j Abwassertechnik |j Wasseraufbereitung |q VZ |
951 | |a AR | ||
952 | |d 367 |j 2019 |b 15 |c 0615 |h 341-348 |g 8 |
author_variant |
b g bg |
---|---|
matchkey_str |
granibplevammikulamaploviovmsatrapinskyy:2019----:tihoersrcuenmcaiapoeteocsutrdienlcotxentcifops |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
58.51 |
publishDate |
2019 |
allfields |
10.1016/j.surfcoat.2019.04.017 doi GBV00000000000629.pica (DE-627)ELV046422935 (ELSEVIER)S0257-8972(19)30382-2 DE-627 ger DE-627 rakwb eng 570 690 VZ 58.51 bkl Grančič, B. verfasserin aut Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. Pleva, M. oth Mikula, M. oth Čaplovičová, M. oth Satrapinskyy, L. oth Roch, T. oth Truchlý, M. oth Sahul, M. oth Gregor, M. oth Švec, P. oth Zahoran, M. oth Kúš, P. oth Enthalten in Elsevier Science Bai, Binglin ELSEVIER A high efficiency solar steam generation system with using residual heat to enhance steam escape 2020 Amsterdam [u.a.] (DE-627)ELV004415906 volume:367 year:2019 day:15 month:06 pages:341-348 extent:8 https://doi.org/10.1016/j.surfcoat.2019.04.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.51 Abwassertechnik Wasseraufbereitung VZ AR 367 2019 15 0615 341-348 8 |
spelling |
10.1016/j.surfcoat.2019.04.017 doi GBV00000000000629.pica (DE-627)ELV046422935 (ELSEVIER)S0257-8972(19)30382-2 DE-627 ger DE-627 rakwb eng 570 690 VZ 58.51 bkl Grančič, B. verfasserin aut Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. Pleva, M. oth Mikula, M. oth Čaplovičová, M. oth Satrapinskyy, L. oth Roch, T. oth Truchlý, M. oth Sahul, M. oth Gregor, M. oth Švec, P. oth Zahoran, M. oth Kúš, P. oth Enthalten in Elsevier Science Bai, Binglin ELSEVIER A high efficiency solar steam generation system with using residual heat to enhance steam escape 2020 Amsterdam [u.a.] (DE-627)ELV004415906 volume:367 year:2019 day:15 month:06 pages:341-348 extent:8 https://doi.org/10.1016/j.surfcoat.2019.04.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.51 Abwassertechnik Wasseraufbereitung VZ AR 367 2019 15 0615 341-348 8 |
allfields_unstemmed |
10.1016/j.surfcoat.2019.04.017 doi GBV00000000000629.pica (DE-627)ELV046422935 (ELSEVIER)S0257-8972(19)30382-2 DE-627 ger DE-627 rakwb eng 570 690 VZ 58.51 bkl Grančič, B. verfasserin aut Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. Pleva, M. oth Mikula, M. oth Čaplovičová, M. oth Satrapinskyy, L. oth Roch, T. oth Truchlý, M. oth Sahul, M. oth Gregor, M. oth Švec, P. oth Zahoran, M. oth Kúš, P. oth Enthalten in Elsevier Science Bai, Binglin ELSEVIER A high efficiency solar steam generation system with using residual heat to enhance steam escape 2020 Amsterdam [u.a.] (DE-627)ELV004415906 volume:367 year:2019 day:15 month:06 pages:341-348 extent:8 https://doi.org/10.1016/j.surfcoat.2019.04.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.51 Abwassertechnik Wasseraufbereitung VZ AR 367 2019 15 0615 341-348 8 |
allfieldsGer |
10.1016/j.surfcoat.2019.04.017 doi GBV00000000000629.pica (DE-627)ELV046422935 (ELSEVIER)S0257-8972(19)30382-2 DE-627 ger DE-627 rakwb eng 570 690 VZ 58.51 bkl Grančič, B. verfasserin aut Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. Pleva, M. oth Mikula, M. oth Čaplovičová, M. oth Satrapinskyy, L. oth Roch, T. oth Truchlý, M. oth Sahul, M. oth Gregor, M. oth Švec, P. oth Zahoran, M. oth Kúš, P. oth Enthalten in Elsevier Science Bai, Binglin ELSEVIER A high efficiency solar steam generation system with using residual heat to enhance steam escape 2020 Amsterdam [u.a.] (DE-627)ELV004415906 volume:367 year:2019 day:15 month:06 pages:341-348 extent:8 https://doi.org/10.1016/j.surfcoat.2019.04.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.51 Abwassertechnik Wasseraufbereitung VZ AR 367 2019 15 0615 341-348 8 |
allfieldsSound |
10.1016/j.surfcoat.2019.04.017 doi GBV00000000000629.pica (DE-627)ELV046422935 (ELSEVIER)S0257-8972(19)30382-2 DE-627 ger DE-627 rakwb eng 570 690 VZ 58.51 bkl Grančič, B. verfasserin aut Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings 2019transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. Pleva, M. oth Mikula, M. oth Čaplovičová, M. oth Satrapinskyy, L. oth Roch, T. oth Truchlý, M. oth Sahul, M. oth Gregor, M. oth Švec, P. oth Zahoran, M. oth Kúš, P. oth Enthalten in Elsevier Science Bai, Binglin ELSEVIER A high efficiency solar steam generation system with using residual heat to enhance steam escape 2020 Amsterdam [u.a.] (DE-627)ELV004415906 volume:367 year:2019 day:15 month:06 pages:341-348 extent:8 https://doi.org/10.1016/j.surfcoat.2019.04.017 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.51 Abwassertechnik Wasseraufbereitung VZ AR 367 2019 15 0615 341-348 8 |
language |
English |
source |
Enthalten in A high efficiency solar steam generation system with using residual heat to enhance steam escape Amsterdam [u.a.] volume:367 year:2019 day:15 month:06 pages:341-348 extent:8 |
sourceStr |
Enthalten in A high efficiency solar steam generation system with using residual heat to enhance steam escape Amsterdam [u.a.] volume:367 year:2019 day:15 month:06 pages:341-348 extent:8 |
format_phy_str_mv |
Article |
bklname |
Abwassertechnik Wasseraufbereitung |
institution |
findex.gbv.de |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
A high efficiency solar steam generation system with using residual heat to enhance steam escape |
authorswithroles_txt_mv |
Grančič, B. @@aut@@ Pleva, M. @@oth@@ Mikula, M. @@oth@@ Čaplovičová, M. @@oth@@ Satrapinskyy, L. @@oth@@ Roch, T. @@oth@@ Truchlý, M. @@oth@@ Sahul, M. @@oth@@ Gregor, M. @@oth@@ Švec, P. @@oth@@ Zahoran, M. @@oth@@ Kúš, P. @@oth@@ |
publishDateDaySort_date |
2019-01-15T00:00:00Z |
hierarchy_top_id |
ELV004415906 |
dewey-sort |
3570 |
id |
ELV046422935 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV046422935</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626013705.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.surfcoat.2019.04.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000629.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV046422935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0257-8972(19)30382-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grančič, B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pleva, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mikula, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Čaplovičová, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Satrapinskyy, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roch, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Truchlý, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sahul, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gregor, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Švec, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zahoran, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kúš, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Bai, Binglin ELSEVIER</subfield><subfield code="t">A high efficiency solar steam generation system with using residual heat to enhance steam escape</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV004415906</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:367</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:341-348</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.surfcoat.2019.04.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.51</subfield><subfield code="j">Abwassertechnik</subfield><subfield code="j">Wasseraufbereitung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">367</subfield><subfield code="j">2019</subfield><subfield code="b">15</subfield><subfield code="c">0615</subfield><subfield code="h">341-348</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
author |
Grančič, B. |
spellingShingle |
Grančič, B. ddc 570 bkl 58.51 Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings |
authorStr |
Grančič, B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV004415906 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 690 VZ 58.51 bkl Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings |
topic |
ddc 570 bkl 58.51 |
topic_unstemmed |
ddc 570 bkl 58.51 |
topic_browse |
ddc 570 bkl 58.51 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m p mp m m mm m č mč l s ls t r tr m t mt m s ms m g mg p š pš m z mz p k pk |
hierarchy_parent_title |
A high efficiency solar steam generation system with using residual heat to enhance steam escape |
hierarchy_parent_id |
ELV004415906 |
dewey-tens |
570 - Life sciences; biology 690 - Building & construction |
hierarchy_top_title |
A high efficiency solar steam generation system with using residual heat to enhance steam escape |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV004415906 |
title |
Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings |
ctrlnum |
(DE-627)ELV046422935 (ELSEVIER)S0257-8972(19)30382-2 |
title_full |
Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings |
author_sort |
Grančič, B. |
journal |
A high efficiency solar steam generation system with using residual heat to enhance steam escape |
journalStr |
A high efficiency solar steam generation system with using residual heat to enhance steam escape |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
341 |
author_browse |
Grančič, B. |
container_volume |
367 |
physical |
8 |
class |
570 690 VZ 58.51 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Grančič, B. |
doi_str_mv |
10.1016/j.surfcoat.2019.04.017 |
dewey-full |
570 690 |
title_sort |
stoichiometry, structure and mechanical properties of co-sputtered ti<ce:inf loc="post">1-x</ce:inf>ta<ce:inf loc="post">x</ce:inf>b<ce:inf loc="post">2±δ</ce:inf> coatings |
title_auth |
Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings |
abstract |
Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. |
abstractGer |
Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. |
abstract_unstemmed |
Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings |
url |
https://doi.org/10.1016/j.surfcoat.2019.04.017 |
remote_bool |
true |
author2 |
Pleva, M. Mikula, M. Čaplovičová, M. Satrapinskyy, L. Roch, T. Truchlý, M. Sahul, M. Gregor, M. Švec, P. Zahoran, M. Kúš, P. |
author2Str |
Pleva, M. Mikula, M. Čaplovičová, M. Satrapinskyy, L. Roch, T. Truchlý, M. Sahul, M. Gregor, M. Švec, P. Zahoran, M. Kúš, P. |
ppnlink |
ELV004415906 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.surfcoat.2019.04.017 |
up_date |
2024-07-06T20:11:42.253Z |
_version_ |
1803861834861641728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV046422935</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626013705.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.surfcoat.2019.04.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000629.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV046422935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0257-8972(19)30382-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grančič, B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stoichiometry, structure and mechanical properties of co-sputtered Ti<ce:inf loc="post">1-x</ce:inf>Ta<ce:inf loc="post">x</ce:inf>B<ce:inf loc="post">2±Δ</ce:inf> coatings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Magnetron co-sputtering from TiB2 and TaB2 stoichiometric targets is used to prepare AlB2-prototype ternary Ti1-xTaxB2±Δ solid solution, with x in the range from 0 to 1. Using this technique, the boron-to-metal ratio (B/Me) varies with the actual Ti and Ta content. The boron-to‑tantalum ratio can be increased by decreasing the TaB2 target voltage, which has a considerable effect on the coating structure. Coatings with B/Me > 2 reveal highly textured nanocolumnar structure, while the coatings with B/Me < 2 tend to be nanocrystalline (without any preferred crystallite orientation) or amorphous. All the deposited coatings have a hardness higher than 32 GPa. The under-stoichiometric (B/Me < 2) coatings show material pile-up around the cube-corner indent edges, an indication for plastic flow and increased ductility.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pleva, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mikula, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Čaplovičová, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Satrapinskyy, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roch, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Truchlý, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sahul, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gregor, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Švec, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zahoran, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kúš, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Bai, Binglin ELSEVIER</subfield><subfield code="t">A high efficiency solar steam generation system with using residual heat to enhance steam escape</subfield><subfield code="d">2020</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV004415906</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:367</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:341-348</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.surfcoat.2019.04.017</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.51</subfield><subfield code="j">Abwassertechnik</subfield><subfield code="j">Wasseraufbereitung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">367</subfield><subfield code="j">2019</subfield><subfield code="b">15</subfield><subfield code="c">0615</subfield><subfield code="h">341-348</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
score |
7.4018593 |