A dynamic equivalence principle for systematic longevity risk management
This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setti...
Ausführliche Beschreibung
Autor*in: |
Hanbali, Hamza [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Type V secretion: From biogenesis to biotechnology - van Ulsen, Peter ELSEVIER, 2014transfer abstract, mathematics and economics, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:86 ; year:2019 ; pages:158-167 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.insmatheco.2019.02.004 |
---|
Katalog-ID: |
ELV046503927 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV046503927 | ||
003 | DE-627 | ||
005 | 20230626013818.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191021s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.insmatheco.2019.02.004 |2 doi | |
028 | 5 | 2 | |a GBV00000000000591.pica |
035 | |a (DE-627)ELV046503927 | ||
035 | |a (ELSEVIER)S0167-6687(18)30542-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q VZ |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 50.32 |2 bkl | ||
084 | |a 50.16 |2 bkl | ||
100 | 1 | |a Hanbali, Hamza |e verfasserin |4 aut | |
245 | 1 | 0 | |a A dynamic equivalence principle for systematic longevity risk management |
264 | 1 | |c 2019transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. | ||
520 | |a This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. | ||
650 | 7 | |a Systematic longevity risk |2 Elsevier | |
650 | 7 | |a Dynamic equivalence principle |2 Elsevier | |
650 | 7 | |a Risk sharing |2 Elsevier | |
650 | 7 | |a Solvency |2 Elsevier | |
650 | 7 | |a (Conditional) Law of large numbers |2 Elsevier | |
700 | 1 | |a Denuit, Michel |4 oth | |
700 | 1 | |a Dhaene, Jan |4 oth | |
700 | 1 | |a Trufin, Julien |4 oth | |
773 | 0 | 8 | |i Enthalten in |n North Holland Publ. Co |a van Ulsen, Peter ELSEVIER |t Type V secretion: From biogenesis to biotechnology |d 2014transfer abstract |d mathematics and economics |g Amsterdam |w (DE-627)ELV022536558 |
773 | 1 | 8 | |g volume:86 |g year:2019 |g pages:158-167 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.insmatheco.2019.02.004 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.32 |j Dynamik |j Schwingungslehre |x Technische Mechanik |q VZ |
936 | b | k | |a 50.16 |j Technische Zuverlässigkeit |j Instandhaltung |q VZ |
951 | |a AR | ||
952 | |d 86 |j 2019 |h 158-167 |g 10 |
author_variant |
h h hh |
---|---|
matchkey_str |
hanbalihamzadenuitmicheldhaenejantrufinj:2019----:dnmcqiaecpicpeosseailnei |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
50.32 50.16 |
publishDate |
2019 |
allfields |
10.1016/j.insmatheco.2019.02.004 doi GBV00000000000591.pica (DE-627)ELV046503927 (ELSEVIER)S0167-6687(18)30542-0 DE-627 ger DE-627 rakwb eng 570 VZ 004 VZ 50.32 bkl 50.16 bkl Hanbali, Hamza verfasserin aut A dynamic equivalence principle for systematic longevity risk management 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. Systematic longevity risk Elsevier Dynamic equivalence principle Elsevier Risk sharing Elsevier Solvency Elsevier (Conditional) Law of large numbers Elsevier Denuit, Michel oth Dhaene, Jan oth Trufin, Julien oth Enthalten in North Holland Publ. Co van Ulsen, Peter ELSEVIER Type V secretion: From biogenesis to biotechnology 2014transfer abstract mathematics and economics Amsterdam (DE-627)ELV022536558 volume:86 year:2019 pages:158-167 extent:10 https://doi.org/10.1016/j.insmatheco.2019.02.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 86 2019 158-167 10 |
spelling |
10.1016/j.insmatheco.2019.02.004 doi GBV00000000000591.pica (DE-627)ELV046503927 (ELSEVIER)S0167-6687(18)30542-0 DE-627 ger DE-627 rakwb eng 570 VZ 004 VZ 50.32 bkl 50.16 bkl Hanbali, Hamza verfasserin aut A dynamic equivalence principle for systematic longevity risk management 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. Systematic longevity risk Elsevier Dynamic equivalence principle Elsevier Risk sharing Elsevier Solvency Elsevier (Conditional) Law of large numbers Elsevier Denuit, Michel oth Dhaene, Jan oth Trufin, Julien oth Enthalten in North Holland Publ. Co van Ulsen, Peter ELSEVIER Type V secretion: From biogenesis to biotechnology 2014transfer abstract mathematics and economics Amsterdam (DE-627)ELV022536558 volume:86 year:2019 pages:158-167 extent:10 https://doi.org/10.1016/j.insmatheco.2019.02.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 86 2019 158-167 10 |
allfields_unstemmed |
10.1016/j.insmatheco.2019.02.004 doi GBV00000000000591.pica (DE-627)ELV046503927 (ELSEVIER)S0167-6687(18)30542-0 DE-627 ger DE-627 rakwb eng 570 VZ 004 VZ 50.32 bkl 50.16 bkl Hanbali, Hamza verfasserin aut A dynamic equivalence principle for systematic longevity risk management 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. Systematic longevity risk Elsevier Dynamic equivalence principle Elsevier Risk sharing Elsevier Solvency Elsevier (Conditional) Law of large numbers Elsevier Denuit, Michel oth Dhaene, Jan oth Trufin, Julien oth Enthalten in North Holland Publ. Co van Ulsen, Peter ELSEVIER Type V secretion: From biogenesis to biotechnology 2014transfer abstract mathematics and economics Amsterdam (DE-627)ELV022536558 volume:86 year:2019 pages:158-167 extent:10 https://doi.org/10.1016/j.insmatheco.2019.02.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 86 2019 158-167 10 |
allfieldsGer |
10.1016/j.insmatheco.2019.02.004 doi GBV00000000000591.pica (DE-627)ELV046503927 (ELSEVIER)S0167-6687(18)30542-0 DE-627 ger DE-627 rakwb eng 570 VZ 004 VZ 50.32 bkl 50.16 bkl Hanbali, Hamza verfasserin aut A dynamic equivalence principle for systematic longevity risk management 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. Systematic longevity risk Elsevier Dynamic equivalence principle Elsevier Risk sharing Elsevier Solvency Elsevier (Conditional) Law of large numbers Elsevier Denuit, Michel oth Dhaene, Jan oth Trufin, Julien oth Enthalten in North Holland Publ. Co van Ulsen, Peter ELSEVIER Type V secretion: From biogenesis to biotechnology 2014transfer abstract mathematics and economics Amsterdam (DE-627)ELV022536558 volume:86 year:2019 pages:158-167 extent:10 https://doi.org/10.1016/j.insmatheco.2019.02.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 86 2019 158-167 10 |
allfieldsSound |
10.1016/j.insmatheco.2019.02.004 doi GBV00000000000591.pica (DE-627)ELV046503927 (ELSEVIER)S0167-6687(18)30542-0 DE-627 ger DE-627 rakwb eng 570 VZ 004 VZ 50.32 bkl 50.16 bkl Hanbali, Hamza verfasserin aut A dynamic equivalence principle for systematic longevity risk management 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. Systematic longevity risk Elsevier Dynamic equivalence principle Elsevier Risk sharing Elsevier Solvency Elsevier (Conditional) Law of large numbers Elsevier Denuit, Michel oth Dhaene, Jan oth Trufin, Julien oth Enthalten in North Holland Publ. Co van Ulsen, Peter ELSEVIER Type V secretion: From biogenesis to biotechnology 2014transfer abstract mathematics and economics Amsterdam (DE-627)ELV022536558 volume:86 year:2019 pages:158-167 extent:10 https://doi.org/10.1016/j.insmatheco.2019.02.004 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 86 2019 158-167 10 |
language |
English |
source |
Enthalten in Type V secretion: From biogenesis to biotechnology Amsterdam volume:86 year:2019 pages:158-167 extent:10 |
sourceStr |
Enthalten in Type V secretion: From biogenesis to biotechnology Amsterdam volume:86 year:2019 pages:158-167 extent:10 |
format_phy_str_mv |
Article |
bklname |
Dynamik Schwingungslehre Technische Zuverlässigkeit Instandhaltung |
institution |
findex.gbv.de |
topic_facet |
Systematic longevity risk Dynamic equivalence principle Risk sharing Solvency (Conditional) Law of large numbers |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Type V secretion: From biogenesis to biotechnology |
authorswithroles_txt_mv |
Hanbali, Hamza @@aut@@ Denuit, Michel @@oth@@ Dhaene, Jan @@oth@@ Trufin, Julien @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV022536558 |
dewey-sort |
3570 |
id |
ELV046503927 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV046503927</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626013818.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.insmatheco.2019.02.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000591.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV046503927</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-6687(18)30542-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hanbali, Hamza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A dynamic equivalence principle for systematic longevity risk management</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Systematic longevity risk</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamic equivalence principle</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Risk sharing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solvency</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">(Conditional) Law of large numbers</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Denuit, Michel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhaene, Jan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trufin, Julien</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North Holland Publ. Co</subfield><subfield code="a">van Ulsen, Peter ELSEVIER</subfield><subfield code="t">Type V secretion: From biogenesis to biotechnology</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="d">mathematics and economics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV022536558</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:86</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:158-167</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.insmatheco.2019.02.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">86</subfield><subfield code="j">2019</subfield><subfield code="h">158-167</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
author |
Hanbali, Hamza |
spellingShingle |
Hanbali, Hamza ddc 570 ddc 004 bkl 50.32 bkl 50.16 Elsevier Systematic longevity risk Elsevier Dynamic equivalence principle Elsevier Risk sharing Elsevier Solvency Elsevier (Conditional) Law of large numbers A dynamic equivalence principle for systematic longevity risk management |
authorStr |
Hanbali, Hamza |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV022536558 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 VZ 004 VZ 50.32 bkl 50.16 bkl A dynamic equivalence principle for systematic longevity risk management Systematic longevity risk Elsevier Dynamic equivalence principle Elsevier Risk sharing Elsevier Solvency Elsevier (Conditional) Law of large numbers Elsevier |
topic |
ddc 570 ddc 004 bkl 50.32 bkl 50.16 Elsevier Systematic longevity risk Elsevier Dynamic equivalence principle Elsevier Risk sharing Elsevier Solvency Elsevier (Conditional) Law of large numbers |
topic_unstemmed |
ddc 570 ddc 004 bkl 50.32 bkl 50.16 Elsevier Systematic longevity risk Elsevier Dynamic equivalence principle Elsevier Risk sharing Elsevier Solvency Elsevier (Conditional) Law of large numbers |
topic_browse |
ddc 570 ddc 004 bkl 50.32 bkl 50.16 Elsevier Systematic longevity risk Elsevier Dynamic equivalence principle Elsevier Risk sharing Elsevier Solvency Elsevier (Conditional) Law of large numbers |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m d md j d jd j t jt |
hierarchy_parent_title |
Type V secretion: From biogenesis to biotechnology |
hierarchy_parent_id |
ELV022536558 |
dewey-tens |
570 - Life sciences; biology 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Type V secretion: From biogenesis to biotechnology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV022536558 |
title |
A dynamic equivalence principle for systematic longevity risk management |
ctrlnum |
(DE-627)ELV046503927 (ELSEVIER)S0167-6687(18)30542-0 |
title_full |
A dynamic equivalence principle for systematic longevity risk management |
author_sort |
Hanbali, Hamza |
journal |
Type V secretion: From biogenesis to biotechnology |
journalStr |
Type V secretion: From biogenesis to biotechnology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
158 |
author_browse |
Hanbali, Hamza |
container_volume |
86 |
physical |
10 |
class |
570 VZ 004 VZ 50.32 bkl 50.16 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hanbali, Hamza |
doi_str_mv |
10.1016/j.insmatheco.2019.02.004 |
dewey-full |
570 004 |
title_sort |
a dynamic equivalence principle for systematic longevity risk management |
title_auth |
A dynamic equivalence principle for systematic longevity risk management |
abstract |
This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. |
abstractGer |
This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. |
abstract_unstemmed |
This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
A dynamic equivalence principle for systematic longevity risk management |
url |
https://doi.org/10.1016/j.insmatheco.2019.02.004 |
remote_bool |
true |
author2 |
Denuit, Michel Dhaene, Jan Trufin, Julien |
author2Str |
Denuit, Michel Dhaene, Jan Trufin, Julien |
ppnlink |
ELV022536558 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.insmatheco.2019.02.004 |
up_date |
2024-07-06T20:24:01.763Z |
_version_ |
1803862610294079488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV046503927</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626013818.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.insmatheco.2019.02.004</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000591.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV046503927</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-6687(18)30542-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hanbali, Hamza</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A dynamic equivalence principle for systematic longevity risk management</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper addresses systematic longevity risk in long-term insurance business. We analyze the consequences of working under unknown survival probabilities on the efficiency of the Law of Large Numbers and point out the need for appropriate and feasible risk management techniques. We propose a setting for risk sharing schemes between the insurer and policyholders via a dynamic equivalence principle. We focus on a pure endowment contract and derive conditions for a viable risk sharing scheme which enhances the solvency situation of the insurer while being more favorably priced for the policyholders.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Systematic longevity risk</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamic equivalence principle</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Risk sharing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solvency</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">(Conditional) Law of large numbers</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Denuit, Michel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhaene, Jan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trufin, Julien</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North Holland Publ. Co</subfield><subfield code="a">van Ulsen, Peter ELSEVIER</subfield><subfield code="t">Type V secretion: From biogenesis to biotechnology</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="d">mathematics and economics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV022536558</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:86</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:158-167</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.insmatheco.2019.02.004</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">86</subfield><subfield code="j">2019</subfield><subfield code="h">158-167</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
score |
7.4011927 |