Modification of aluminum current collectors with a conductive polymer for application in lithium batteries
Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery...
Ausführliche Beschreibung
Autor*in: |
Lepage, D. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Umfang: |
4 |
---|
Übergeordnetes Werk: |
Enthalten in: A multi-objective model to configure an electronic reverse logistics network and third party selection - Tosarkani, Babak Mohamadpour ELSEVIER, 2018, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:102 ; year:2019 ; pages:1-4 ; extent:4 |
Links: |
---|
DOI / URN: |
10.1016/j.elecom.2019.03.009 |
---|
Katalog-ID: |
ELV046522069 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV046522069 | ||
003 | DE-627 | ||
005 | 20230626013842.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191021s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.elecom.2019.03.009 |2 doi | |
028 | 5 | 2 | |a GBV00000000000618.pica |
035 | |a (DE-627)ELV046522069 | ||
035 | |a (ELSEVIER)S1388-2481(19)30073-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |a 330 |q VZ |
084 | |a 43.35 |2 bkl | ||
084 | |a 85.35 |2 bkl | ||
100 | 1 | |a Lepage, D. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modification of aluminum current collectors with a conductive polymer for application in lithium batteries |
264 | 1 | |c 2019transfer abstract | |
300 | |a 4 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. | ||
520 | |a Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. | ||
700 | 1 | |a Savignac, L. |4 oth | |
700 | 1 | |a Saulnier, M. |4 oth | |
700 | 1 | |a Gervais, S. |4 oth | |
700 | 1 | |a Schougaard, S.B. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Tosarkani, Babak Mohamadpour ELSEVIER |t A multi-objective model to configure an electronic reverse logistics network and third party selection |d 2018 |g Amsterdam [u.a.] |w (DE-627)ELV000764884 |
773 | 1 | 8 | |g volume:102 |g year:2019 |g pages:1-4 |g extent:4 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.elecom.2019.03.009 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 43.35 |j Umweltrichtlinien |j Umweltnormen |q VZ |
936 | b | k | |a 85.35 |j Fertigung |q VZ |
951 | |a AR | ||
952 | |d 102 |j 2019 |h 1-4 |g 4 |
author_variant |
d l dl |
---|---|
matchkey_str |
lepagedsavignaclsaulniermgervaissschouga:2019----:oiiainflmnmurncletrwtaodcieoyefrpl |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
43.35 85.35 |
publishDate |
2019 |
allfields |
10.1016/j.elecom.2019.03.009 doi GBV00000000000618.pica (DE-627)ELV046522069 (ELSEVIER)S1388-2481(19)30073-6 DE-627 ger DE-627 rakwb eng 690 330 VZ 43.35 bkl 85.35 bkl Lepage, D. verfasserin aut Modification of aluminum current collectors with a conductive polymer for application in lithium batteries 2019transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. Savignac, L. oth Saulnier, M. oth Gervais, S. oth Schougaard, S.B. oth Enthalten in Elsevier Science Tosarkani, Babak Mohamadpour ELSEVIER A multi-objective model to configure an electronic reverse logistics network and third party selection 2018 Amsterdam [u.a.] (DE-627)ELV000764884 volume:102 year:2019 pages:1-4 extent:4 https://doi.org/10.1016/j.elecom.2019.03.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 43.35 Umweltrichtlinien Umweltnormen VZ 85.35 Fertigung VZ AR 102 2019 1-4 4 |
spelling |
10.1016/j.elecom.2019.03.009 doi GBV00000000000618.pica (DE-627)ELV046522069 (ELSEVIER)S1388-2481(19)30073-6 DE-627 ger DE-627 rakwb eng 690 330 VZ 43.35 bkl 85.35 bkl Lepage, D. verfasserin aut Modification of aluminum current collectors with a conductive polymer for application in lithium batteries 2019transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. Savignac, L. oth Saulnier, M. oth Gervais, S. oth Schougaard, S.B. oth Enthalten in Elsevier Science Tosarkani, Babak Mohamadpour ELSEVIER A multi-objective model to configure an electronic reverse logistics network and third party selection 2018 Amsterdam [u.a.] (DE-627)ELV000764884 volume:102 year:2019 pages:1-4 extent:4 https://doi.org/10.1016/j.elecom.2019.03.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 43.35 Umweltrichtlinien Umweltnormen VZ 85.35 Fertigung VZ AR 102 2019 1-4 4 |
allfields_unstemmed |
10.1016/j.elecom.2019.03.009 doi GBV00000000000618.pica (DE-627)ELV046522069 (ELSEVIER)S1388-2481(19)30073-6 DE-627 ger DE-627 rakwb eng 690 330 VZ 43.35 bkl 85.35 bkl Lepage, D. verfasserin aut Modification of aluminum current collectors with a conductive polymer for application in lithium batteries 2019transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. Savignac, L. oth Saulnier, M. oth Gervais, S. oth Schougaard, S.B. oth Enthalten in Elsevier Science Tosarkani, Babak Mohamadpour ELSEVIER A multi-objective model to configure an electronic reverse logistics network and third party selection 2018 Amsterdam [u.a.] (DE-627)ELV000764884 volume:102 year:2019 pages:1-4 extent:4 https://doi.org/10.1016/j.elecom.2019.03.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 43.35 Umweltrichtlinien Umweltnormen VZ 85.35 Fertigung VZ AR 102 2019 1-4 4 |
allfieldsGer |
10.1016/j.elecom.2019.03.009 doi GBV00000000000618.pica (DE-627)ELV046522069 (ELSEVIER)S1388-2481(19)30073-6 DE-627 ger DE-627 rakwb eng 690 330 VZ 43.35 bkl 85.35 bkl Lepage, D. verfasserin aut Modification of aluminum current collectors with a conductive polymer for application in lithium batteries 2019transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. Savignac, L. oth Saulnier, M. oth Gervais, S. oth Schougaard, S.B. oth Enthalten in Elsevier Science Tosarkani, Babak Mohamadpour ELSEVIER A multi-objective model to configure an electronic reverse logistics network and third party selection 2018 Amsterdam [u.a.] (DE-627)ELV000764884 volume:102 year:2019 pages:1-4 extent:4 https://doi.org/10.1016/j.elecom.2019.03.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 43.35 Umweltrichtlinien Umweltnormen VZ 85.35 Fertigung VZ AR 102 2019 1-4 4 |
allfieldsSound |
10.1016/j.elecom.2019.03.009 doi GBV00000000000618.pica (DE-627)ELV046522069 (ELSEVIER)S1388-2481(19)30073-6 DE-627 ger DE-627 rakwb eng 690 330 VZ 43.35 bkl 85.35 bkl Lepage, D. verfasserin aut Modification of aluminum current collectors with a conductive polymer for application in lithium batteries 2019transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. Savignac, L. oth Saulnier, M. oth Gervais, S. oth Schougaard, S.B. oth Enthalten in Elsevier Science Tosarkani, Babak Mohamadpour ELSEVIER A multi-objective model to configure an electronic reverse logistics network and third party selection 2018 Amsterdam [u.a.] (DE-627)ELV000764884 volume:102 year:2019 pages:1-4 extent:4 https://doi.org/10.1016/j.elecom.2019.03.009 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 43.35 Umweltrichtlinien Umweltnormen VZ 85.35 Fertigung VZ AR 102 2019 1-4 4 |
language |
English |
source |
Enthalten in A multi-objective model to configure an electronic reverse logistics network and third party selection Amsterdam [u.a.] volume:102 year:2019 pages:1-4 extent:4 |
sourceStr |
Enthalten in A multi-objective model to configure an electronic reverse logistics network and third party selection Amsterdam [u.a.] volume:102 year:2019 pages:1-4 extent:4 |
format_phy_str_mv |
Article |
bklname |
Umweltrichtlinien Umweltnormen Fertigung |
institution |
findex.gbv.de |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
A multi-objective model to configure an electronic reverse logistics network and third party selection |
authorswithroles_txt_mv |
Lepage, D. @@aut@@ Savignac, L. @@oth@@ Saulnier, M. @@oth@@ Gervais, S. @@oth@@ Schougaard, S.B. @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV000764884 |
dewey-sort |
3690 |
id |
ELV046522069 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV046522069</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626013842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.elecom.2019.03.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000618.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV046522069</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1388-2481(19)30073-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lepage, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modification of aluminum current collectors with a conductive polymer for application in lithium batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savignac, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saulnier, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gervais, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schougaard, S.B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Tosarkani, Babak Mohamadpour ELSEVIER</subfield><subfield code="t">A multi-objective model to configure an electronic reverse logistics network and third party selection</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000764884</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:102</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:1-4</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.elecom.2019.03.009</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.35</subfield><subfield code="j">Umweltrichtlinien</subfield><subfield code="j">Umweltnormen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="j">Fertigung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">102</subfield><subfield code="j">2019</subfield><subfield code="h">1-4</subfield><subfield code="g">4</subfield></datafield></record></collection>
|
author |
Lepage, D. |
spellingShingle |
Lepage, D. ddc 690 bkl 43.35 bkl 85.35 Modification of aluminum current collectors with a conductive polymer for application in lithium batteries |
authorStr |
Lepage, D. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000764884 |
format |
electronic Article |
dewey-ones |
690 - Buildings 330 - Economics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 330 VZ 43.35 bkl 85.35 bkl Modification of aluminum current collectors with a conductive polymer for application in lithium batteries |
topic |
ddc 690 bkl 43.35 bkl 85.35 |
topic_unstemmed |
ddc 690 bkl 43.35 bkl 85.35 |
topic_browse |
ddc 690 bkl 43.35 bkl 85.35 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l s ls m s ms s g sg s s ss |
hierarchy_parent_title |
A multi-objective model to configure an electronic reverse logistics network and third party selection |
hierarchy_parent_id |
ELV000764884 |
dewey-tens |
690 - Building & construction 330 - Economics |
hierarchy_top_title |
A multi-objective model to configure an electronic reverse logistics network and third party selection |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000764884 |
title |
Modification of aluminum current collectors with a conductive polymer for application in lithium batteries |
ctrlnum |
(DE-627)ELV046522069 (ELSEVIER)S1388-2481(19)30073-6 |
title_full |
Modification of aluminum current collectors with a conductive polymer for application in lithium batteries |
author_sort |
Lepage, D. |
journal |
A multi-objective model to configure an electronic reverse logistics network and third party selection |
journalStr |
A multi-objective model to configure an electronic reverse logistics network and third party selection |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
1 |
author_browse |
Lepage, D. |
container_volume |
102 |
physical |
4 |
class |
690 330 VZ 43.35 bkl 85.35 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Lepage, D. |
doi_str_mv |
10.1016/j.elecom.2019.03.009 |
dewey-full |
690 330 |
title_sort |
modification of aluminum current collectors with a conductive polymer for application in lithium batteries |
title_auth |
Modification of aluminum current collectors with a conductive polymer for application in lithium batteries |
abstract |
Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. |
abstractGer |
Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. |
abstract_unstemmed |
Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO |
title_short |
Modification of aluminum current collectors with a conductive polymer for application in lithium batteries |
url |
https://doi.org/10.1016/j.elecom.2019.03.009 |
remote_bool |
true |
author2 |
Savignac, L. Saulnier, M. Gervais, S. Schougaard, S.B. |
author2Str |
Savignac, L. Saulnier, M. Gervais, S. Schougaard, S.B. |
ppnlink |
ELV000764884 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.elecom.2019.03.009 |
up_date |
2024-07-06T20:27:01.550Z |
_version_ |
1803862798814412800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV046522069</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626013842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.elecom.2019.03.009</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000618.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV046522069</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1388-2481(19)30073-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.35</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lepage, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modification of aluminum current collectors with a conductive polymer for application in lithium batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although often overlooked, current collectors play a significant role in the performance, safety, and stability of lithium batteries. Here we present a strategy to modify conventional Al current collectors using a conducting polymer, significantly decreasing contact resistance and improving battery performance. The oxidant Fe (III) p-toluenesulfonate is aerosolized onto an aluminum foil current collector, followed by polymerization of 3, 4-ethylenedioxythiophene (EDOT) by chemical vapor deposition (CVD). As such, this fabrication technique should scalable using roll-to-roll or similar fabrication methods. The coated foil was used as a cathode current collector in lithium batteries. The improvement of the current collector is determined by electrochemical test in coin cells with C-LiFePO4 (C-LFP) and lithium as active materials. At 15C discharge rate, the new composite C-LFP-PEDOT-Al electrode provides a ~30% increase in discharge capacity compared to the standard C-LFP-Al electrode. The new composite has a perfect stability over 50 cycles at a C/2.5 rate.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savignac, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saulnier, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gervais, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schougaard, S.B.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Tosarkani, Babak Mohamadpour ELSEVIER</subfield><subfield code="t">A multi-objective model to configure an electronic reverse logistics network and third party selection</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000764884</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:102</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:1-4</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.elecom.2019.03.009</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.35</subfield><subfield code="j">Umweltrichtlinien</subfield><subfield code="j">Umweltnormen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.35</subfield><subfield code="j">Fertigung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">102</subfield><subfield code="j">2019</subfield><subfield code="h">1-4</subfield><subfield code="g">4</subfield></datafield></record></collection>
|
score |
7.4005117 |