Hilbert spaces of analytic functions with a contractive backward shift
We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend c...
Ausführliche Beschreibung
Autor*in: |
Aleman, Alexandru [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
43 |
---|
Übergeordnetes Werk: |
Enthalten in: Corrigendum to “Rifampicin resistance mutations in the rpoB gene of - Urusova, Darya V. ELSEVIER, 2022, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:277 ; year:2019 ; number:1 ; day:1 ; month:07 ; pages:157-199 ; extent:43 |
Links: |
---|
DOI / URN: |
10.1016/j.jfa.2018.08.019 |
---|
Katalog-ID: |
ELV046657703 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV046657703 | ||
003 | DE-627 | ||
005 | 20230626014104.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191021s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jfa.2018.08.019 |2 doi | |
028 | 5 | 2 | |a GBV00000000000611.pica |
035 | |a (DE-627)ELV046657703 | ||
035 | |a (ELSEVIER)S0022-1236(18)30322-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 44.00 |2 bkl | ||
100 | 1 | |a Aleman, Alexandru |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hilbert spaces of analytic functions with a contractive backward shift |
264 | 1 | |c 2019transfer abstract | |
300 | |a 43 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. | ||
520 | |a We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. | ||
650 | 7 | |a Backward shift |2 Elsevier | |
650 | 7 | |a Hilbert spaces of analytic functions |2 Elsevier | |
700 | 1 | |a Malman, Bartosz |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Urusova, Darya V. ELSEVIER |t Corrigendum to “Rifampicin resistance mutations in the rpoB gene of |d 2022 |g Amsterdam [u.a.] |w (DE-627)ELV007566018 |
773 | 1 | 8 | |g volume:277 |g year:2019 |g number:1 |g day:1 |g month:07 |g pages:157-199 |g extent:43 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jfa.2018.08.019 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.00 |j Medizin: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 277 |j 2019 |e 1 |b 1 |c 0701 |h 157-199 |g 43 |
author_variant |
a a aa |
---|---|
matchkey_str |
alemanalexandrumalmanbartosz:2019----:ibrsaeoaayifntosihcnrc |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
44.00 |
publishDate |
2019 |
allfields |
10.1016/j.jfa.2018.08.019 doi GBV00000000000611.pica (DE-627)ELV046657703 (ELSEVIER)S0022-1236(18)30322-7 DE-627 ger DE-627 rakwb eng 570 VZ BIODIV DE-30 fid 44.00 bkl Aleman, Alexandru verfasserin aut Hilbert spaces of analytic functions with a contractive backward shift 2019transfer abstract 43 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. Backward shift Elsevier Hilbert spaces of analytic functions Elsevier Malman, Bartosz oth Enthalten in Elsevier Urusova, Darya V. ELSEVIER Corrigendum to “Rifampicin resistance mutations in the rpoB gene of 2022 Amsterdam [u.a.] (DE-627)ELV007566018 volume:277 year:2019 number:1 day:1 month:07 pages:157-199 extent:43 https://doi.org/10.1016/j.jfa.2018.08.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 277 2019 1 1 0701 157-199 43 |
spelling |
10.1016/j.jfa.2018.08.019 doi GBV00000000000611.pica (DE-627)ELV046657703 (ELSEVIER)S0022-1236(18)30322-7 DE-627 ger DE-627 rakwb eng 570 VZ BIODIV DE-30 fid 44.00 bkl Aleman, Alexandru verfasserin aut Hilbert spaces of analytic functions with a contractive backward shift 2019transfer abstract 43 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. Backward shift Elsevier Hilbert spaces of analytic functions Elsevier Malman, Bartosz oth Enthalten in Elsevier Urusova, Darya V. ELSEVIER Corrigendum to “Rifampicin resistance mutations in the rpoB gene of 2022 Amsterdam [u.a.] (DE-627)ELV007566018 volume:277 year:2019 number:1 day:1 month:07 pages:157-199 extent:43 https://doi.org/10.1016/j.jfa.2018.08.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 277 2019 1 1 0701 157-199 43 |
allfields_unstemmed |
10.1016/j.jfa.2018.08.019 doi GBV00000000000611.pica (DE-627)ELV046657703 (ELSEVIER)S0022-1236(18)30322-7 DE-627 ger DE-627 rakwb eng 570 VZ BIODIV DE-30 fid 44.00 bkl Aleman, Alexandru verfasserin aut Hilbert spaces of analytic functions with a contractive backward shift 2019transfer abstract 43 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. Backward shift Elsevier Hilbert spaces of analytic functions Elsevier Malman, Bartosz oth Enthalten in Elsevier Urusova, Darya V. ELSEVIER Corrigendum to “Rifampicin resistance mutations in the rpoB gene of 2022 Amsterdam [u.a.] (DE-627)ELV007566018 volume:277 year:2019 number:1 day:1 month:07 pages:157-199 extent:43 https://doi.org/10.1016/j.jfa.2018.08.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 277 2019 1 1 0701 157-199 43 |
allfieldsGer |
10.1016/j.jfa.2018.08.019 doi GBV00000000000611.pica (DE-627)ELV046657703 (ELSEVIER)S0022-1236(18)30322-7 DE-627 ger DE-627 rakwb eng 570 VZ BIODIV DE-30 fid 44.00 bkl Aleman, Alexandru verfasserin aut Hilbert spaces of analytic functions with a contractive backward shift 2019transfer abstract 43 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. Backward shift Elsevier Hilbert spaces of analytic functions Elsevier Malman, Bartosz oth Enthalten in Elsevier Urusova, Darya V. ELSEVIER Corrigendum to “Rifampicin resistance mutations in the rpoB gene of 2022 Amsterdam [u.a.] (DE-627)ELV007566018 volume:277 year:2019 number:1 day:1 month:07 pages:157-199 extent:43 https://doi.org/10.1016/j.jfa.2018.08.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 277 2019 1 1 0701 157-199 43 |
allfieldsSound |
10.1016/j.jfa.2018.08.019 doi GBV00000000000611.pica (DE-627)ELV046657703 (ELSEVIER)S0022-1236(18)30322-7 DE-627 ger DE-627 rakwb eng 570 VZ BIODIV DE-30 fid 44.00 bkl Aleman, Alexandru verfasserin aut Hilbert spaces of analytic functions with a contractive backward shift 2019transfer abstract 43 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. Backward shift Elsevier Hilbert spaces of analytic functions Elsevier Malman, Bartosz oth Enthalten in Elsevier Urusova, Darya V. ELSEVIER Corrigendum to “Rifampicin resistance mutations in the rpoB gene of 2022 Amsterdam [u.a.] (DE-627)ELV007566018 volume:277 year:2019 number:1 day:1 month:07 pages:157-199 extent:43 https://doi.org/10.1016/j.jfa.2018.08.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 277 2019 1 1 0701 157-199 43 |
language |
English |
source |
Enthalten in Corrigendum to “Rifampicin resistance mutations in the rpoB gene of Amsterdam [u.a.] volume:277 year:2019 number:1 day:1 month:07 pages:157-199 extent:43 |
sourceStr |
Enthalten in Corrigendum to “Rifampicin resistance mutations in the rpoB gene of Amsterdam [u.a.] volume:277 year:2019 number:1 day:1 month:07 pages:157-199 extent:43 |
format_phy_str_mv |
Article |
bklname |
Medizin: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Backward shift Hilbert spaces of analytic functions |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Corrigendum to “Rifampicin resistance mutations in the rpoB gene of |
authorswithroles_txt_mv |
Aleman, Alexandru @@aut@@ Malman, Bartosz @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV007566018 |
dewey-sort |
3570 |
id |
ELV046657703 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV046657703</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626014104.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jfa.2018.08.019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000611.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV046657703</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1236(18)30322-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aleman, Alexandru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hilbert spaces of analytic functions with a contractive backward shift</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">43</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Backward shift</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hilbert spaces of analytic functions</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malman, Bartosz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Urusova, Darya V. ELSEVIER</subfield><subfield code="t">Corrigendum to “Rifampicin resistance mutations in the rpoB gene of</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007566018</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:277</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:157-199</subfield><subfield code="g">extent:43</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jfa.2018.08.019</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">277</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">157-199</subfield><subfield code="g">43</subfield></datafield></record></collection>
|
author |
Aleman, Alexandru |
spellingShingle |
Aleman, Alexandru ddc 570 fid BIODIV bkl 44.00 Elsevier Backward shift Elsevier Hilbert spaces of analytic functions Hilbert spaces of analytic functions with a contractive backward shift |
authorStr |
Aleman, Alexandru |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV007566018 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 VZ BIODIV DE-30 fid 44.00 bkl Hilbert spaces of analytic functions with a contractive backward shift Backward shift Elsevier Hilbert spaces of analytic functions Elsevier |
topic |
ddc 570 fid BIODIV bkl 44.00 Elsevier Backward shift Elsevier Hilbert spaces of analytic functions |
topic_unstemmed |
ddc 570 fid BIODIV bkl 44.00 Elsevier Backward shift Elsevier Hilbert spaces of analytic functions |
topic_browse |
ddc 570 fid BIODIV bkl 44.00 Elsevier Backward shift Elsevier Hilbert spaces of analytic functions |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
b m bm |
hierarchy_parent_title |
Corrigendum to “Rifampicin resistance mutations in the rpoB gene of |
hierarchy_parent_id |
ELV007566018 |
dewey-tens |
570 - Life sciences; biology |
hierarchy_top_title |
Corrigendum to “Rifampicin resistance mutations in the rpoB gene of |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV007566018 |
title |
Hilbert spaces of analytic functions with a contractive backward shift |
ctrlnum |
(DE-627)ELV046657703 (ELSEVIER)S0022-1236(18)30322-7 |
title_full |
Hilbert spaces of analytic functions with a contractive backward shift |
author_sort |
Aleman, Alexandru |
journal |
Corrigendum to “Rifampicin resistance mutations in the rpoB gene of |
journalStr |
Corrigendum to “Rifampicin resistance mutations in the rpoB gene of |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
157 |
author_browse |
Aleman, Alexandru |
container_volume |
277 |
physical |
43 |
class |
570 VZ BIODIV DE-30 fid 44.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Aleman, Alexandru |
doi_str_mv |
10.1016/j.jfa.2018.08.019 |
dewey-full |
570 |
title_sort |
hilbert spaces of analytic functions with a contractive backward shift |
title_auth |
Hilbert spaces of analytic functions with a contractive backward shift |
abstract |
We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. |
abstractGer |
We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. |
abstract_unstemmed |
We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
container_issue |
1 |
title_short |
Hilbert spaces of analytic functions with a contractive backward shift |
url |
https://doi.org/10.1016/j.jfa.2018.08.019 |
remote_bool |
true |
author2 |
Malman, Bartosz |
author2Str |
Malman, Bartosz |
ppnlink |
ELV007566018 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.jfa.2018.08.019 |
up_date |
2024-07-06T20:48:13.099Z |
_version_ |
1803864132131225600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV046657703</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626014104.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jfa.2018.08.019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000611.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV046657703</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-1236(18)30322-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aleman, Alexandru</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hilbert spaces of analytic functions with a contractive backward shift</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">43</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider Hilbert spaces of analytic functions in the disk with a normalized reproducing kernel and such that the backward shift f ( z ) ↦ f ( z ) − f ( 0 ) z is a contraction on the space. We present a model for this operator and use it to prove the surprising result that functions which extend continuously to the closure of the disk are dense in the space. This has several applications, for example we can answer a question regarding reverse Carleson embeddings for these spaces. We also identify a large class of spaces which are similar to the de Branges–Rovnyak spaces and prove some results which are new even in the classical case.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Backward shift</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hilbert spaces of analytic functions</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Malman, Bartosz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Urusova, Darya V. ELSEVIER</subfield><subfield code="t">Corrigendum to “Rifampicin resistance mutations in the rpoB gene of</subfield><subfield code="d">2022</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV007566018</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:277</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:157-199</subfield><subfield code="g">extent:43</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jfa.2018.08.019</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">277</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">157-199</subfield><subfield code="g">43</subfield></datafield></record></collection>
|
score |
7.4013014 |