Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory
In this paper, a new model for studying the effects of small-scale parameters simultaneously, on large amplitude vibrations of sandwich plates is developed using the higher-order nonlocal strain gradient theory. Considering the higher-order theories for capturing the size effects of nanostructures r...
Ausführliche Beschreibung
Autor*in: |
Nematollahi, Mohammad Sadegh [verfasserIn] Mohammadi, Hossein [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
Higher-order nonlocal strain gradient theory |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of mechanical sciences - Amsterdam [u.a.] : Elsevier Science, 1960, 156, Seite 31-45 |
---|---|
Übergeordnetes Werk: |
volume:156 ; pages:31-45 |
DOI / URN: |
10.1016/j.ijmecsci.2019.03.022 |
---|
Katalog-ID: |
ELV046682473 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV046682473 | ||
003 | DE-627 | ||
005 | 20230927074426.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191021s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijmecsci.2019.03.022 |2 doi | |
035 | |a (DE-627)ELV046682473 | ||
035 | |a (ELSEVIER)S0020-7403(18)33987-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 50.31 |2 bkl | ||
084 | |a 50.33 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Nematollahi, Mohammad Sadegh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory |
264 | 1 | |c 2019 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this paper, a new model for studying the effects of small-scale parameters simultaneously, on large amplitude vibrations of sandwich plates is developed using the higher-order nonlocal strain gradient theory. Considering the higher-order theories for capturing the size effects of nanostructures results in a set of nonlinear partial differential (PD) equations, including bi-nonlocal terms. By employing Hamilton's principle, the equations of motion for symmetric and anti-symmetric sandwich plates are derived based on the classical plate theory. The partial nonlinear differential equations of motion are reduced to an ordinary differential equation for transverse vibrations of nanoplates using the Galerkin's method. An analytical solution procedure is employed to obtain the closed-form frequency equation as a function of the vibration amplitude, small-scale parameters and sandwich layers elasticity, density and thickness coefficients. Numerical results are presented in order to investigate the sandwich layers coefficients on nonlinear vibrational behavior of nanoplates as same as small-scale parameters and the amplitude of vibrations. It is found that the vibration amplitude plays the main role in nonlinear vibrational behavior of nanoplates in which, nonlinear frequency and its ratio to linear frequency will be increased by increasing it. Moreover, there are non-uniform behaviors by increasing the sandwich layers coefficients and small-scale parameters. In addition, in the case of large amplitude vibrations, effects of sandwich layers’ coefficients and small-scale parameters on the nonlinear frequency and its ratio to linear frequency will become more noticeable. In order to validate the present solution procedure, the results are compared with those obtained from molecular dynamics simulations, the higher-order nonlocal strain gradient theory and the higher-order shear deformation plate theory. | ||
650 | 4 | |a Higher-order nonlocal strain gradient theory | |
650 | 4 | |a Nonlinear vibrations | |
650 | 4 | |a Rectangular sandwich nanoplates | |
650 | 4 | |a Bi-nonlocal formulations | |
650 | 4 | |a Multiple time scale method | |
700 | 1 | |a Mohammadi, Hossein |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of mechanical sciences |d Amsterdam [u.a.] : Elsevier Science, 1960 |g 156, Seite 31-45 |h Online-Ressource |w (DE-627)306586223 |w (DE-600)1498168-3 |w (DE-576)259270954 |7 nnns |
773 | 1 | 8 | |g volume:156 |g pages:31-45 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.31 |j Technische Mechanik |q VZ |
936 | b | k | |a 50.33 |j Technische Strömungsmechanik |q VZ |
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 156 |h 31-45 |
author_variant |
m s n ms msn h m hm |
---|---|
matchkey_str |
nematollahimohammadsadeghmohammadihossei:2019----:emtialnnierirtoaayiosnwcnnpaebsdnihrren |
hierarchy_sort_str |
2019 |
bklnumber |
50.31 50.33 50.38 |
publishDate |
2019 |
allfields |
10.1016/j.ijmecsci.2019.03.022 doi (DE-627)ELV046682473 (ELSEVIER)S0020-7403(18)33987-0 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl 50.33 bkl 50.38 bkl Nematollahi, Mohammad Sadegh verfasserin aut Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new model for studying the effects of small-scale parameters simultaneously, on large amplitude vibrations of sandwich plates is developed using the higher-order nonlocal strain gradient theory. Considering the higher-order theories for capturing the size effects of nanostructures results in a set of nonlinear partial differential (PD) equations, including bi-nonlocal terms. By employing Hamilton's principle, the equations of motion for symmetric and anti-symmetric sandwich plates are derived based on the classical plate theory. The partial nonlinear differential equations of motion are reduced to an ordinary differential equation for transverse vibrations of nanoplates using the Galerkin's method. An analytical solution procedure is employed to obtain the closed-form frequency equation as a function of the vibration amplitude, small-scale parameters and sandwich layers elasticity, density and thickness coefficients. Numerical results are presented in order to investigate the sandwich layers coefficients on nonlinear vibrational behavior of nanoplates as same as small-scale parameters and the amplitude of vibrations. It is found that the vibration amplitude plays the main role in nonlinear vibrational behavior of nanoplates in which, nonlinear frequency and its ratio to linear frequency will be increased by increasing it. Moreover, there are non-uniform behaviors by increasing the sandwich layers coefficients and small-scale parameters. In addition, in the case of large amplitude vibrations, effects of sandwich layers’ coefficients and small-scale parameters on the nonlinear frequency and its ratio to linear frequency will become more noticeable. In order to validate the present solution procedure, the results are compared with those obtained from molecular dynamics simulations, the higher-order nonlocal strain gradient theory and the higher-order shear deformation plate theory. Higher-order nonlocal strain gradient theory Nonlinear vibrations Rectangular sandwich nanoplates Bi-nonlocal formulations Multiple time scale method Mohammadi, Hossein verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 156, Seite 31-45 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:156 pages:31-45 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik VZ 50.33 Technische Strömungsmechanik VZ 50.38 Technische Thermodynamik VZ AR 156 31-45 |
spelling |
10.1016/j.ijmecsci.2019.03.022 doi (DE-627)ELV046682473 (ELSEVIER)S0020-7403(18)33987-0 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl 50.33 bkl 50.38 bkl Nematollahi, Mohammad Sadegh verfasserin aut Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new model for studying the effects of small-scale parameters simultaneously, on large amplitude vibrations of sandwich plates is developed using the higher-order nonlocal strain gradient theory. Considering the higher-order theories for capturing the size effects of nanostructures results in a set of nonlinear partial differential (PD) equations, including bi-nonlocal terms. By employing Hamilton's principle, the equations of motion for symmetric and anti-symmetric sandwich plates are derived based on the classical plate theory. The partial nonlinear differential equations of motion are reduced to an ordinary differential equation for transverse vibrations of nanoplates using the Galerkin's method. An analytical solution procedure is employed to obtain the closed-form frequency equation as a function of the vibration amplitude, small-scale parameters and sandwich layers elasticity, density and thickness coefficients. Numerical results are presented in order to investigate the sandwich layers coefficients on nonlinear vibrational behavior of nanoplates as same as small-scale parameters and the amplitude of vibrations. It is found that the vibration amplitude plays the main role in nonlinear vibrational behavior of nanoplates in which, nonlinear frequency and its ratio to linear frequency will be increased by increasing it. Moreover, there are non-uniform behaviors by increasing the sandwich layers coefficients and small-scale parameters. In addition, in the case of large amplitude vibrations, effects of sandwich layers’ coefficients and small-scale parameters on the nonlinear frequency and its ratio to linear frequency will become more noticeable. In order to validate the present solution procedure, the results are compared with those obtained from molecular dynamics simulations, the higher-order nonlocal strain gradient theory and the higher-order shear deformation plate theory. Higher-order nonlocal strain gradient theory Nonlinear vibrations Rectangular sandwich nanoplates Bi-nonlocal formulations Multiple time scale method Mohammadi, Hossein verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 156, Seite 31-45 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:156 pages:31-45 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik VZ 50.33 Technische Strömungsmechanik VZ 50.38 Technische Thermodynamik VZ AR 156 31-45 |
allfields_unstemmed |
10.1016/j.ijmecsci.2019.03.022 doi (DE-627)ELV046682473 (ELSEVIER)S0020-7403(18)33987-0 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl 50.33 bkl 50.38 bkl Nematollahi, Mohammad Sadegh verfasserin aut Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new model for studying the effects of small-scale parameters simultaneously, on large amplitude vibrations of sandwich plates is developed using the higher-order nonlocal strain gradient theory. Considering the higher-order theories for capturing the size effects of nanostructures results in a set of nonlinear partial differential (PD) equations, including bi-nonlocal terms. By employing Hamilton's principle, the equations of motion for symmetric and anti-symmetric sandwich plates are derived based on the classical plate theory. The partial nonlinear differential equations of motion are reduced to an ordinary differential equation for transverse vibrations of nanoplates using the Galerkin's method. An analytical solution procedure is employed to obtain the closed-form frequency equation as a function of the vibration amplitude, small-scale parameters and sandwich layers elasticity, density and thickness coefficients. Numerical results are presented in order to investigate the sandwich layers coefficients on nonlinear vibrational behavior of nanoplates as same as small-scale parameters and the amplitude of vibrations. It is found that the vibration amplitude plays the main role in nonlinear vibrational behavior of nanoplates in which, nonlinear frequency and its ratio to linear frequency will be increased by increasing it. Moreover, there are non-uniform behaviors by increasing the sandwich layers coefficients and small-scale parameters. In addition, in the case of large amplitude vibrations, effects of sandwich layers’ coefficients and small-scale parameters on the nonlinear frequency and its ratio to linear frequency will become more noticeable. In order to validate the present solution procedure, the results are compared with those obtained from molecular dynamics simulations, the higher-order nonlocal strain gradient theory and the higher-order shear deformation plate theory. Higher-order nonlocal strain gradient theory Nonlinear vibrations Rectangular sandwich nanoplates Bi-nonlocal formulations Multiple time scale method Mohammadi, Hossein verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 156, Seite 31-45 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:156 pages:31-45 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik VZ 50.33 Technische Strömungsmechanik VZ 50.38 Technische Thermodynamik VZ AR 156 31-45 |
allfieldsGer |
10.1016/j.ijmecsci.2019.03.022 doi (DE-627)ELV046682473 (ELSEVIER)S0020-7403(18)33987-0 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl 50.33 bkl 50.38 bkl Nematollahi, Mohammad Sadegh verfasserin aut Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new model for studying the effects of small-scale parameters simultaneously, on large amplitude vibrations of sandwich plates is developed using the higher-order nonlocal strain gradient theory. Considering the higher-order theories for capturing the size effects of nanostructures results in a set of nonlinear partial differential (PD) equations, including bi-nonlocal terms. By employing Hamilton's principle, the equations of motion for symmetric and anti-symmetric sandwich plates are derived based on the classical plate theory. The partial nonlinear differential equations of motion are reduced to an ordinary differential equation for transverse vibrations of nanoplates using the Galerkin's method. An analytical solution procedure is employed to obtain the closed-form frequency equation as a function of the vibration amplitude, small-scale parameters and sandwich layers elasticity, density and thickness coefficients. Numerical results are presented in order to investigate the sandwich layers coefficients on nonlinear vibrational behavior of nanoplates as same as small-scale parameters and the amplitude of vibrations. It is found that the vibration amplitude plays the main role in nonlinear vibrational behavior of nanoplates in which, nonlinear frequency and its ratio to linear frequency will be increased by increasing it. Moreover, there are non-uniform behaviors by increasing the sandwich layers coefficients and small-scale parameters. In addition, in the case of large amplitude vibrations, effects of sandwich layers’ coefficients and small-scale parameters on the nonlinear frequency and its ratio to linear frequency will become more noticeable. In order to validate the present solution procedure, the results are compared with those obtained from molecular dynamics simulations, the higher-order nonlocal strain gradient theory and the higher-order shear deformation plate theory. Higher-order nonlocal strain gradient theory Nonlinear vibrations Rectangular sandwich nanoplates Bi-nonlocal formulations Multiple time scale method Mohammadi, Hossein verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 156, Seite 31-45 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:156 pages:31-45 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik VZ 50.33 Technische Strömungsmechanik VZ 50.38 Technische Thermodynamik VZ AR 156 31-45 |
allfieldsSound |
10.1016/j.ijmecsci.2019.03.022 doi (DE-627)ELV046682473 (ELSEVIER)S0020-7403(18)33987-0 DE-627 ger DE-627 rda eng 530 VZ 50.31 bkl 50.33 bkl 50.38 bkl Nematollahi, Mohammad Sadegh verfasserin aut Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory 2019 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this paper, a new model for studying the effects of small-scale parameters simultaneously, on large amplitude vibrations of sandwich plates is developed using the higher-order nonlocal strain gradient theory. Considering the higher-order theories for capturing the size effects of nanostructures results in a set of nonlinear partial differential (PD) equations, including bi-nonlocal terms. By employing Hamilton's principle, the equations of motion for symmetric and anti-symmetric sandwich plates are derived based on the classical plate theory. The partial nonlinear differential equations of motion are reduced to an ordinary differential equation for transverse vibrations of nanoplates using the Galerkin's method. An analytical solution procedure is employed to obtain the closed-form frequency equation as a function of the vibration amplitude, small-scale parameters and sandwich layers elasticity, density and thickness coefficients. Numerical results are presented in order to investigate the sandwich layers coefficients on nonlinear vibrational behavior of nanoplates as same as small-scale parameters and the amplitude of vibrations. It is found that the vibration amplitude plays the main role in nonlinear vibrational behavior of nanoplates in which, nonlinear frequency and its ratio to linear frequency will be increased by increasing it. Moreover, there are non-uniform behaviors by increasing the sandwich layers coefficients and small-scale parameters. In addition, in the case of large amplitude vibrations, effects of sandwich layers’ coefficients and small-scale parameters on the nonlinear frequency and its ratio to linear frequency will become more noticeable. In order to validate the present solution procedure, the results are compared with those obtained from molecular dynamics simulations, the higher-order nonlocal strain gradient theory and the higher-order shear deformation plate theory. Higher-order nonlocal strain gradient theory Nonlinear vibrations Rectangular sandwich nanoplates Bi-nonlocal formulations Multiple time scale method Mohammadi, Hossein verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 156, Seite 31-45 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:156 pages:31-45 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik VZ 50.33 Technische Strömungsmechanik VZ 50.38 Technische Thermodynamik VZ AR 156 31-45 |
language |
English |
source |
Enthalten in International journal of mechanical sciences 156, Seite 31-45 volume:156 pages:31-45 |
sourceStr |
Enthalten in International journal of mechanical sciences 156, Seite 31-45 volume:156 pages:31-45 |
format_phy_str_mv |
Article |
bklname |
Technische Mechanik Technische Strömungsmechanik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Higher-order nonlocal strain gradient theory Nonlinear vibrations Rectangular sandwich nanoplates Bi-nonlocal formulations Multiple time scale method |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of mechanical sciences |
authorswithroles_txt_mv |
Nematollahi, Mohammad Sadegh @@aut@@ Mohammadi, Hossein @@aut@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
306586223 |
dewey-sort |
3530 |
id |
ELV046682473 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV046682473</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927074426.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijmecsci.2019.03.022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV046682473</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7403(18)33987-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nematollahi, Mohammad Sadegh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a new model for studying the effects of small-scale parameters simultaneously, on large amplitude vibrations of sandwich plates is developed using the higher-order nonlocal strain gradient theory. Considering the higher-order theories for capturing the size effects of nanostructures results in a set of nonlinear partial differential (PD) equations, including bi-nonlocal terms. By employing Hamilton's principle, the equations of motion for symmetric and anti-symmetric sandwich plates are derived based on the classical plate theory. The partial nonlinear differential equations of motion are reduced to an ordinary differential equation for transverse vibrations of nanoplates using the Galerkin's method. An analytical solution procedure is employed to obtain the closed-form frequency equation as a function of the vibration amplitude, small-scale parameters and sandwich layers elasticity, density and thickness coefficients. Numerical results are presented in order to investigate the sandwich layers coefficients on nonlinear vibrational behavior of nanoplates as same as small-scale parameters and the amplitude of vibrations. It is found that the vibration amplitude plays the main role in nonlinear vibrational behavior of nanoplates in which, nonlinear frequency and its ratio to linear frequency will be increased by increasing it. Moreover, there are non-uniform behaviors by increasing the sandwich layers coefficients and small-scale parameters. In addition, in the case of large amplitude vibrations, effects of sandwich layers’ coefficients and small-scale parameters on the nonlinear frequency and its ratio to linear frequency will become more noticeable. In order to validate the present solution procedure, the results are compared with those obtained from molecular dynamics simulations, the higher-order nonlocal strain gradient theory and the higher-order shear deformation plate theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Higher-order nonlocal strain gradient theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear vibrations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rectangular sandwich nanoplates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bi-nonlocal formulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple time scale method</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohammadi, Hossein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of mechanical sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1960</subfield><subfield code="g">156, Seite 31-45</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306586223</subfield><subfield code="w">(DE-600)1498168-3</subfield><subfield code="w">(DE-576)259270954</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:156</subfield><subfield code="g">pages:31-45</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">156</subfield><subfield code="h">31-45</subfield></datafield></record></collection>
|
author |
Nematollahi, Mohammad Sadegh |
spellingShingle |
Nematollahi, Mohammad Sadegh ddc 530 bkl 50.31 bkl 50.33 bkl 50.38 misc Higher-order nonlocal strain gradient theory misc Nonlinear vibrations misc Rectangular sandwich nanoplates misc Bi-nonlocal formulations misc Multiple time scale method Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory |
authorStr |
Nematollahi, Mohammad Sadegh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306586223 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 VZ 50.31 bkl 50.33 bkl 50.38 bkl Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory Higher-order nonlocal strain gradient theory Nonlinear vibrations Rectangular sandwich nanoplates Bi-nonlocal formulations Multiple time scale method |
topic |
ddc 530 bkl 50.31 bkl 50.33 bkl 50.38 misc Higher-order nonlocal strain gradient theory misc Nonlinear vibrations misc Rectangular sandwich nanoplates misc Bi-nonlocal formulations misc Multiple time scale method |
topic_unstemmed |
ddc 530 bkl 50.31 bkl 50.33 bkl 50.38 misc Higher-order nonlocal strain gradient theory misc Nonlinear vibrations misc Rectangular sandwich nanoplates misc Bi-nonlocal formulations misc Multiple time scale method |
topic_browse |
ddc 530 bkl 50.31 bkl 50.33 bkl 50.38 misc Higher-order nonlocal strain gradient theory misc Nonlinear vibrations misc Rectangular sandwich nanoplates misc Bi-nonlocal formulations misc Multiple time scale method |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of mechanical sciences |
hierarchy_parent_id |
306586223 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
International journal of mechanical sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 |
title |
Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory |
ctrlnum |
(DE-627)ELV046682473 (ELSEVIER)S0020-7403(18)33987-0 |
title_full |
Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory |
author_sort |
Nematollahi, Mohammad Sadegh |
journal |
International journal of mechanical sciences |
journalStr |
International journal of mechanical sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
31 |
author_browse |
Nematollahi, Mohammad Sadegh Mohammadi, Hossein |
container_volume |
156 |
class |
530 VZ 50.31 bkl 50.33 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Nematollahi, Mohammad Sadegh |
doi_str_mv |
10.1016/j.ijmecsci.2019.03.022 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory |
title_auth |
Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory |
abstract |
In this paper, a new model for studying the effects of small-scale parameters simultaneously, on large amplitude vibrations of sandwich plates is developed using the higher-order nonlocal strain gradient theory. Considering the higher-order theories for capturing the size effects of nanostructures results in a set of nonlinear partial differential (PD) equations, including bi-nonlocal terms. By employing Hamilton's principle, the equations of motion for symmetric and anti-symmetric sandwich plates are derived based on the classical plate theory. The partial nonlinear differential equations of motion are reduced to an ordinary differential equation for transverse vibrations of nanoplates using the Galerkin's method. An analytical solution procedure is employed to obtain the closed-form frequency equation as a function of the vibration amplitude, small-scale parameters and sandwich layers elasticity, density and thickness coefficients. Numerical results are presented in order to investigate the sandwich layers coefficients on nonlinear vibrational behavior of nanoplates as same as small-scale parameters and the amplitude of vibrations. It is found that the vibration amplitude plays the main role in nonlinear vibrational behavior of nanoplates in which, nonlinear frequency and its ratio to linear frequency will be increased by increasing it. Moreover, there are non-uniform behaviors by increasing the sandwich layers coefficients and small-scale parameters. In addition, in the case of large amplitude vibrations, effects of sandwich layers’ coefficients and small-scale parameters on the nonlinear frequency and its ratio to linear frequency will become more noticeable. In order to validate the present solution procedure, the results are compared with those obtained from molecular dynamics simulations, the higher-order nonlocal strain gradient theory and the higher-order shear deformation plate theory. |
abstractGer |
In this paper, a new model for studying the effects of small-scale parameters simultaneously, on large amplitude vibrations of sandwich plates is developed using the higher-order nonlocal strain gradient theory. Considering the higher-order theories for capturing the size effects of nanostructures results in a set of nonlinear partial differential (PD) equations, including bi-nonlocal terms. By employing Hamilton's principle, the equations of motion for symmetric and anti-symmetric sandwich plates are derived based on the classical plate theory. The partial nonlinear differential equations of motion are reduced to an ordinary differential equation for transverse vibrations of nanoplates using the Galerkin's method. An analytical solution procedure is employed to obtain the closed-form frequency equation as a function of the vibration amplitude, small-scale parameters and sandwich layers elasticity, density and thickness coefficients. Numerical results are presented in order to investigate the sandwich layers coefficients on nonlinear vibrational behavior of nanoplates as same as small-scale parameters and the amplitude of vibrations. It is found that the vibration amplitude plays the main role in nonlinear vibrational behavior of nanoplates in which, nonlinear frequency and its ratio to linear frequency will be increased by increasing it. Moreover, there are non-uniform behaviors by increasing the sandwich layers coefficients and small-scale parameters. In addition, in the case of large amplitude vibrations, effects of sandwich layers’ coefficients and small-scale parameters on the nonlinear frequency and its ratio to linear frequency will become more noticeable. In order to validate the present solution procedure, the results are compared with those obtained from molecular dynamics simulations, the higher-order nonlocal strain gradient theory and the higher-order shear deformation plate theory. |
abstract_unstemmed |
In this paper, a new model for studying the effects of small-scale parameters simultaneously, on large amplitude vibrations of sandwich plates is developed using the higher-order nonlocal strain gradient theory. Considering the higher-order theories for capturing the size effects of nanostructures results in a set of nonlinear partial differential (PD) equations, including bi-nonlocal terms. By employing Hamilton's principle, the equations of motion for symmetric and anti-symmetric sandwich plates are derived based on the classical plate theory. The partial nonlinear differential equations of motion are reduced to an ordinary differential equation for transverse vibrations of nanoplates using the Galerkin's method. An analytical solution procedure is employed to obtain the closed-form frequency equation as a function of the vibration amplitude, small-scale parameters and sandwich layers elasticity, density and thickness coefficients. Numerical results are presented in order to investigate the sandwich layers coefficients on nonlinear vibrational behavior of nanoplates as same as small-scale parameters and the amplitude of vibrations. It is found that the vibration amplitude plays the main role in nonlinear vibrational behavior of nanoplates in which, nonlinear frequency and its ratio to linear frequency will be increased by increasing it. Moreover, there are non-uniform behaviors by increasing the sandwich layers coefficients and small-scale parameters. In addition, in the case of large amplitude vibrations, effects of sandwich layers’ coefficients and small-scale parameters on the nonlinear frequency and its ratio to linear frequency will become more noticeable. In order to validate the present solution procedure, the results are compared with those obtained from molecular dynamics simulations, the higher-order nonlocal strain gradient theory and the higher-order shear deformation plate theory. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory |
remote_bool |
true |
author2 |
Mohammadi, Hossein |
author2Str |
Mohammadi, Hossein |
ppnlink |
306586223 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijmecsci.2019.03.022 |
up_date |
2024-07-06T20:52:23.455Z |
_version_ |
1803864394649567232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV046682473</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230927074426.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijmecsci.2019.03.022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV046682473</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7403(18)33987-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nematollahi, Mohammad Sadegh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometrically nonlinear vibration analysis of sandwich nanoplates based on higher-order nonlocal strain gradient theory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a new model for studying the effects of small-scale parameters simultaneously, on large amplitude vibrations of sandwich plates is developed using the higher-order nonlocal strain gradient theory. Considering the higher-order theories for capturing the size effects of nanostructures results in a set of nonlinear partial differential (PD) equations, including bi-nonlocal terms. By employing Hamilton's principle, the equations of motion for symmetric and anti-symmetric sandwich plates are derived based on the classical plate theory. The partial nonlinear differential equations of motion are reduced to an ordinary differential equation for transverse vibrations of nanoplates using the Galerkin's method. An analytical solution procedure is employed to obtain the closed-form frequency equation as a function of the vibration amplitude, small-scale parameters and sandwich layers elasticity, density and thickness coefficients. Numerical results are presented in order to investigate the sandwich layers coefficients on nonlinear vibrational behavior of nanoplates as same as small-scale parameters and the amplitude of vibrations. It is found that the vibration amplitude plays the main role in nonlinear vibrational behavior of nanoplates in which, nonlinear frequency and its ratio to linear frequency will be increased by increasing it. Moreover, there are non-uniform behaviors by increasing the sandwich layers coefficients and small-scale parameters. In addition, in the case of large amplitude vibrations, effects of sandwich layers’ coefficients and small-scale parameters on the nonlinear frequency and its ratio to linear frequency will become more noticeable. In order to validate the present solution procedure, the results are compared with those obtained from molecular dynamics simulations, the higher-order nonlocal strain gradient theory and the higher-order shear deformation plate theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Higher-order nonlocal strain gradient theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear vibrations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rectangular sandwich nanoplates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bi-nonlocal formulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple time scale method</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mohammadi, Hossein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of mechanical sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1960</subfield><subfield code="g">156, Seite 31-45</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306586223</subfield><subfield code="w">(DE-600)1498168-3</subfield><subfield code="w">(DE-576)259270954</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:156</subfield><subfield code="g">pages:31-45</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">156</subfield><subfield code="h">31-45</subfield></datafield></record></collection>
|
score |
7.402237 |