Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm
Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are associated with shape features. In this study, we propose a fully automatic way to quantify tumor imaging characteristics using deep learning-based segmentation and test whether these characteristics are pred...
Ausführliche Beschreibung
Autor*in: |
Buda, Mateusz [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs - Tacheci, Ilja ELSEVIER, 2014, an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:109 ; year:2019 ; pages:218-225 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.compbiomed.2019.05.002 |
---|
Katalog-ID: |
ELV047034548 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV047034548 | ||
003 | DE-627 | ||
005 | 20230624131334.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191021s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compbiomed.2019.05.002 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica |
035 | |a (DE-627)ELV047034548 | ||
035 | |a (ELSEVIER)S0010-4825(19)30152-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 570 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 35.70 |2 bkl | ||
084 | |a 42.12 |2 bkl | ||
084 | |a 42.15 |2 bkl | ||
100 | 1 | |a Buda, Mateusz |e verfasserin |4 aut | |
245 | 1 | 0 | |a Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm |
264 | 1 | |c 2019 | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are associated with shape features. In this study, we propose a fully automatic way to quantify tumor imaging characteristics using deep learning-based segmentation and test whether these characteristics are predictive of tumor genomic subtypes. | ||
650 | 7 | |a Deep learning |2 Elsevier | |
650 | 7 | |a Brain segmentation |2 Elsevier | |
650 | 7 | |a MRI |2 Elsevier | |
650 | 7 | |a Radiogenomics |2 Elsevier | |
650 | 7 | |a LGG |2 Elsevier | |
700 | 1 | |a Saha, Ashirbani |4 oth | |
700 | 1 | |a Mazurowski, Maciej A. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Tacheci, Ilja ELSEVIER |t Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs |d 2014 |d an international journal |g Amsterdam [u.a.] |w (DE-627)ELV012617792 |
773 | 1 | 8 | |g volume:109 |g year:2019 |g pages:218-225 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.compbiomed.2019.05.002 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_257 | ||
936 | b | k | |a 35.70 |j Biochemie: Allgemeines |q VZ |
936 | b | k | |a 42.12 |j Biophysik |q VZ |
936 | b | k | |a 42.15 |j Zellbiologie |q VZ |
951 | |a AR | ||
952 | |d 109 |j 2019 |h 218-225 |g 8 |
author_variant |
m b mb |
---|---|
matchkey_str |
budamateuszsahaashirbanimazurowskimaciej:2019----:soitoognmcutpsfoegaeloawtsaeetrsuoaialet |
hierarchy_sort_str |
2019 |
bklnumber |
35.70 42.12 42.15 |
publishDate |
2019 |
allfields |
10.1016/j.compbiomed.2019.05.002 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV047034548 (ELSEVIER)S0010-4825(19)30152-0 DE-627 ger DE-627 rakwb eng 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Buda, Mateusz verfasserin aut Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm 2019 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are associated with shape features. In this study, we propose a fully automatic way to quantify tumor imaging characteristics using deep learning-based segmentation and test whether these characteristics are predictive of tumor genomic subtypes. Deep learning Elsevier Brain segmentation Elsevier MRI Elsevier Radiogenomics Elsevier LGG Elsevier Saha, Ashirbani oth Mazurowski, Maciej A. oth Enthalten in Elsevier Science Tacheci, Ilja ELSEVIER Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs 2014 an international journal Amsterdam [u.a.] (DE-627)ELV012617792 volume:109 year:2019 pages:218-225 extent:8 https://doi.org/10.1016/j.compbiomed.2019.05.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_65 GBV_ILN_120 GBV_ILN_257 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 109 2019 218-225 8 |
spelling |
10.1016/j.compbiomed.2019.05.002 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV047034548 (ELSEVIER)S0010-4825(19)30152-0 DE-627 ger DE-627 rakwb eng 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Buda, Mateusz verfasserin aut Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm 2019 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are associated with shape features. In this study, we propose a fully automatic way to quantify tumor imaging characteristics using deep learning-based segmentation and test whether these characteristics are predictive of tumor genomic subtypes. Deep learning Elsevier Brain segmentation Elsevier MRI Elsevier Radiogenomics Elsevier LGG Elsevier Saha, Ashirbani oth Mazurowski, Maciej A. oth Enthalten in Elsevier Science Tacheci, Ilja ELSEVIER Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs 2014 an international journal Amsterdam [u.a.] (DE-627)ELV012617792 volume:109 year:2019 pages:218-225 extent:8 https://doi.org/10.1016/j.compbiomed.2019.05.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_65 GBV_ILN_120 GBV_ILN_257 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 109 2019 218-225 8 |
allfields_unstemmed |
10.1016/j.compbiomed.2019.05.002 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV047034548 (ELSEVIER)S0010-4825(19)30152-0 DE-627 ger DE-627 rakwb eng 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Buda, Mateusz verfasserin aut Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm 2019 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are associated with shape features. In this study, we propose a fully automatic way to quantify tumor imaging characteristics using deep learning-based segmentation and test whether these characteristics are predictive of tumor genomic subtypes. Deep learning Elsevier Brain segmentation Elsevier MRI Elsevier Radiogenomics Elsevier LGG Elsevier Saha, Ashirbani oth Mazurowski, Maciej A. oth Enthalten in Elsevier Science Tacheci, Ilja ELSEVIER Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs 2014 an international journal Amsterdam [u.a.] (DE-627)ELV012617792 volume:109 year:2019 pages:218-225 extent:8 https://doi.org/10.1016/j.compbiomed.2019.05.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_65 GBV_ILN_120 GBV_ILN_257 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 109 2019 218-225 8 |
allfieldsGer |
10.1016/j.compbiomed.2019.05.002 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV047034548 (ELSEVIER)S0010-4825(19)30152-0 DE-627 ger DE-627 rakwb eng 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Buda, Mateusz verfasserin aut Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm 2019 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are associated with shape features. In this study, we propose a fully automatic way to quantify tumor imaging characteristics using deep learning-based segmentation and test whether these characteristics are predictive of tumor genomic subtypes. Deep learning Elsevier Brain segmentation Elsevier MRI Elsevier Radiogenomics Elsevier LGG Elsevier Saha, Ashirbani oth Mazurowski, Maciej A. oth Enthalten in Elsevier Science Tacheci, Ilja ELSEVIER Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs 2014 an international journal Amsterdam [u.a.] (DE-627)ELV012617792 volume:109 year:2019 pages:218-225 extent:8 https://doi.org/10.1016/j.compbiomed.2019.05.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_65 GBV_ILN_120 GBV_ILN_257 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 109 2019 218-225 8 |
allfieldsSound |
10.1016/j.compbiomed.2019.05.002 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV047034548 (ELSEVIER)S0010-4825(19)30152-0 DE-627 ger DE-627 rakwb eng 610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Buda, Mateusz verfasserin aut Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm 2019 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are associated with shape features. In this study, we propose a fully automatic way to quantify tumor imaging characteristics using deep learning-based segmentation and test whether these characteristics are predictive of tumor genomic subtypes. Deep learning Elsevier Brain segmentation Elsevier MRI Elsevier Radiogenomics Elsevier LGG Elsevier Saha, Ashirbani oth Mazurowski, Maciej A. oth Enthalten in Elsevier Science Tacheci, Ilja ELSEVIER Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs 2014 an international journal Amsterdam [u.a.] (DE-627)ELV012617792 volume:109 year:2019 pages:218-225 extent:8 https://doi.org/10.1016/j.compbiomed.2019.05.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_65 GBV_ILN_120 GBV_ILN_257 35.70 Biochemie: Allgemeines VZ 42.12 Biophysik VZ 42.15 Zellbiologie VZ AR 109 2019 218-225 8 |
language |
English |
source |
Enthalten in Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs Amsterdam [u.a.] volume:109 year:2019 pages:218-225 extent:8 |
sourceStr |
Enthalten in Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs Amsterdam [u.a.] volume:109 year:2019 pages:218-225 extent:8 |
format_phy_str_mv |
Article |
bklname |
Biochemie: Allgemeines Biophysik Zellbiologie |
institution |
findex.gbv.de |
topic_facet |
Deep learning Brain segmentation MRI Radiogenomics LGG |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs |
authorswithroles_txt_mv |
Buda, Mateusz @@aut@@ Saha, Ashirbani @@oth@@ Mazurowski, Maciej A. @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV012617792 |
dewey-sort |
3610 |
id |
ELV047034548 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047034548</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624131334.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2019.05.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047034548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0010-4825(19)30152-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buda, Mateusz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are associated with shape features. In this study, we propose a fully automatic way to quantify tumor imaging characteristics using deep learning-based segmentation and test whether these characteristics are predictive of tumor genomic subtypes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deep learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Brain segmentation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MRI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Radiogenomics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">LGG</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saha, Ashirbani</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mazurowski, Maciej A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Tacheci, Ilja ELSEVIER</subfield><subfield code="t">Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs</subfield><subfield code="d">2014</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012617792</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:109</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:218-225</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.compbiomed.2019.05.002</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_257</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.15</subfield><subfield code="j">Zellbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">109</subfield><subfield code="j">2019</subfield><subfield code="h">218-225</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
author |
Buda, Mateusz |
spellingShingle |
Buda, Mateusz ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Deep learning Elsevier Brain segmentation Elsevier MRI Elsevier Radiogenomics Elsevier LGG Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm |
authorStr |
Buda, Mateusz |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV012617792 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm Deep learning Elsevier Brain segmentation Elsevier MRI Elsevier Radiogenomics Elsevier LGG Elsevier |
topic |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Deep learning Elsevier Brain segmentation Elsevier MRI Elsevier Radiogenomics Elsevier LGG |
topic_unstemmed |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Deep learning Elsevier Brain segmentation Elsevier MRI Elsevier Radiogenomics Elsevier LGG |
topic_browse |
ddc 610 ddc 570 fid BIODIV bkl 35.70 bkl 42.12 bkl 42.15 Elsevier Deep learning Elsevier Brain segmentation Elsevier MRI Elsevier Radiogenomics Elsevier LGG |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
a s as m a m ma mam |
hierarchy_parent_title |
Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs |
hierarchy_parent_id |
ELV012617792 |
dewey-tens |
610 - Medicine & health 570 - Life sciences; biology |
hierarchy_top_title |
Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV012617792 |
title |
Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm |
ctrlnum |
(DE-627)ELV047034548 (ELSEVIER)S0010-4825(19)30152-0 |
title_full |
Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm |
author_sort |
Buda, Mateusz |
journal |
Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs |
journalStr |
Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
218 |
author_browse |
Buda, Mateusz |
container_volume |
109 |
physical |
8 |
class |
610 VZ 570 VZ BIODIV DE-30 fid 35.70 bkl 42.12 bkl 42.15 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Buda, Mateusz |
doi_str_mv |
10.1016/j.compbiomed.2019.05.002 |
dewey-full |
610 570 |
title_sort |
association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm |
title_auth |
Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm |
abstract |
Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are associated with shape features. In this study, we propose a fully automatic way to quantify tumor imaging characteristics using deep learning-based segmentation and test whether these characteristics are predictive of tumor genomic subtypes. |
abstractGer |
Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are associated with shape features. In this study, we propose a fully automatic way to quantify tumor imaging characteristics using deep learning-based segmentation and test whether these characteristics are predictive of tumor genomic subtypes. |
abstract_unstemmed |
Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are associated with shape features. In this study, we propose a fully automatic way to quantify tumor imaging characteristics using deep learning-based segmentation and test whether these characteristics are predictive of tumor genomic subtypes. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA GBV_ILN_11 GBV_ILN_22 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_65 GBV_ILN_120 GBV_ILN_257 |
title_short |
Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm |
url |
https://doi.org/10.1016/j.compbiomed.2019.05.002 |
remote_bool |
true |
author2 |
Saha, Ashirbani Mazurowski, Maciej A. |
author2Str |
Saha, Ashirbani Mazurowski, Maciej A. |
ppnlink |
ELV012617792 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.compbiomed.2019.05.002 |
up_date |
2024-07-06T21:47:39.164Z |
_version_ |
1803867871421399040 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047034548</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624131334.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compbiomed.2019.05.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047034548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0010-4825(19)30152-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.15</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buda, Mateusz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent analysis identified distinct genomic subtypes of lower-grade glioma tumors which are associated with shape features. In this study, we propose a fully automatic way to quantify tumor imaging characteristics using deep learning-based segmentation and test whether these characteristics are predictive of tumor genomic subtypes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deep learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Brain segmentation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MRI</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Radiogenomics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">LGG</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saha, Ashirbani</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mazurowski, Maciej A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Tacheci, Ilja ELSEVIER</subfield><subfield code="t">Sa1349 Impact of Water Load Test on the Gastric Myoelectric Activity in Experimental Pigs</subfield><subfield code="d">2014</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012617792</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:109</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:218-225</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.compbiomed.2019.05.002</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_257</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.70</subfield><subfield code="j">Biochemie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="j">Biophysik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.15</subfield><subfield code="j">Zellbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">109</subfield><subfield code="j">2019</subfield><subfield code="h">218-225</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
score |
7.4015427 |