Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature
SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sint...
Ausführliche Beschreibung
Autor*in: |
Zheng, Jia-Qi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
7 |
---|
Übergeordnetes Werk: |
Enthalten in: Improved differential evolution for RSSD-based localization in Gaussian mixture noise - Zhang, Yuanyuan ELSEVIER, 2023, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:39 ; year:2019 ; number:14 ; pages:3981-3987 ; extent:7 |
Links: |
---|
DOI / URN: |
10.1016/j.jeurceramsoc.2019.05.019 |
---|
Katalog-ID: |
ELV047273801 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV047273801 | ||
003 | DE-627 | ||
005 | 20230626015321.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191021s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jeurceramsoc.2019.05.019 |2 doi | |
028 | 5 | 2 | |a GBV00000000000676.pica |
035 | |a (DE-627)ELV047273801 | ||
035 | |a (ELSEVIER)S0955-2219(19)30325-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Zheng, Jia-Qi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature |
264 | 1 | |c 2019transfer abstract | |
300 | |a 7 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. | ||
520 | |a SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. | ||
650 | 7 | |a Silicon carbide |2 Elsevier | |
650 | 7 | |a Molybdenum disilicide |2 Elsevier | |
650 | 7 | |a Sintering temperature |2 Elsevier | |
650 | 7 | |a Electrical percolation |2 Elsevier | |
650 | 7 | |a Grain boundary |2 Elsevier | |
700 | 1 | |a Chen, Jian |4 oth | |
700 | 1 | |a Zhang, Bu-Hao |4 oth | |
700 | 1 | |a Liu, Xue-Jian |4 oth | |
700 | 1 | |a Chen, Zhong-Ming |4 oth | |
700 | 1 | |a Wu, Hai-Bo |4 oth | |
700 | 1 | |a Huang, Zheng-Ren |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Zhang, Yuanyuan ELSEVIER |t Improved differential evolution for RSSD-based localization in Gaussian mixture noise |d 2023 |g Amsterdam [u.a.] |w (DE-627)ELV009961755 |
773 | 1 | 8 | |g volume:39 |g year:2019 |g number:14 |g pages:3981-3987 |g extent:7 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jeurceramsoc.2019.05.019 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 54.00 |j Informatik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 39 |j 2019 |e 14 |h 3981-3987 |g 7 |
author_variant |
j q z jqz |
---|---|
matchkey_str |
zhengjiaqichenjianzhangbuhaoliuxuejianch:2019----:lcrclecltoadnrrdmsiiyfrsueesitrdimscifops2encmoi |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
54.00 |
publishDate |
2019 |
allfields |
10.1016/j.jeurceramsoc.2019.05.019 doi GBV00000000000676.pica (DE-627)ELV047273801 (ELSEVIER)S0955-2219(19)30325-5 DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Zheng, Jia-Qi verfasserin aut Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature 2019transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. Silicon carbide Elsevier Molybdenum disilicide Elsevier Sintering temperature Elsevier Electrical percolation Elsevier Grain boundary Elsevier Chen, Jian oth Zhang, Bu-Hao oth Liu, Xue-Jian oth Chen, Zhong-Ming oth Wu, Hai-Bo oth Huang, Zheng-Ren oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:39 year:2019 number:14 pages:3981-3987 extent:7 https://doi.org/10.1016/j.jeurceramsoc.2019.05.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 39 2019 14 3981-3987 7 |
spelling |
10.1016/j.jeurceramsoc.2019.05.019 doi GBV00000000000676.pica (DE-627)ELV047273801 (ELSEVIER)S0955-2219(19)30325-5 DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Zheng, Jia-Qi verfasserin aut Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature 2019transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. Silicon carbide Elsevier Molybdenum disilicide Elsevier Sintering temperature Elsevier Electrical percolation Elsevier Grain boundary Elsevier Chen, Jian oth Zhang, Bu-Hao oth Liu, Xue-Jian oth Chen, Zhong-Ming oth Wu, Hai-Bo oth Huang, Zheng-Ren oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:39 year:2019 number:14 pages:3981-3987 extent:7 https://doi.org/10.1016/j.jeurceramsoc.2019.05.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 39 2019 14 3981-3987 7 |
allfields_unstemmed |
10.1016/j.jeurceramsoc.2019.05.019 doi GBV00000000000676.pica (DE-627)ELV047273801 (ELSEVIER)S0955-2219(19)30325-5 DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Zheng, Jia-Qi verfasserin aut Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature 2019transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. Silicon carbide Elsevier Molybdenum disilicide Elsevier Sintering temperature Elsevier Electrical percolation Elsevier Grain boundary Elsevier Chen, Jian oth Zhang, Bu-Hao oth Liu, Xue-Jian oth Chen, Zhong-Ming oth Wu, Hai-Bo oth Huang, Zheng-Ren oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:39 year:2019 number:14 pages:3981-3987 extent:7 https://doi.org/10.1016/j.jeurceramsoc.2019.05.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 39 2019 14 3981-3987 7 |
allfieldsGer |
10.1016/j.jeurceramsoc.2019.05.019 doi GBV00000000000676.pica (DE-627)ELV047273801 (ELSEVIER)S0955-2219(19)30325-5 DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Zheng, Jia-Qi verfasserin aut Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature 2019transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. Silicon carbide Elsevier Molybdenum disilicide Elsevier Sintering temperature Elsevier Electrical percolation Elsevier Grain boundary Elsevier Chen, Jian oth Zhang, Bu-Hao oth Liu, Xue-Jian oth Chen, Zhong-Ming oth Wu, Hai-Bo oth Huang, Zheng-Ren oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:39 year:2019 number:14 pages:3981-3987 extent:7 https://doi.org/10.1016/j.jeurceramsoc.2019.05.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 39 2019 14 3981-3987 7 |
allfieldsSound |
10.1016/j.jeurceramsoc.2019.05.019 doi GBV00000000000676.pica (DE-627)ELV047273801 (ELSEVIER)S0955-2219(19)30325-5 DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Zheng, Jia-Qi verfasserin aut Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature 2019transfer abstract 7 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. Silicon carbide Elsevier Molybdenum disilicide Elsevier Sintering temperature Elsevier Electrical percolation Elsevier Grain boundary Elsevier Chen, Jian oth Zhang, Bu-Hao oth Liu, Xue-Jian oth Chen, Zhong-Ming oth Wu, Hai-Bo oth Huang, Zheng-Ren oth Enthalten in Elsevier Science Zhang, Yuanyuan ELSEVIER Improved differential evolution for RSSD-based localization in Gaussian mixture noise 2023 Amsterdam [u.a.] (DE-627)ELV009961755 volume:39 year:2019 number:14 pages:3981-3987 extent:7 https://doi.org/10.1016/j.jeurceramsoc.2019.05.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 54.00 Informatik: Allgemeines VZ AR 39 2019 14 3981-3987 7 |
language |
English |
source |
Enthalten in Improved differential evolution for RSSD-based localization in Gaussian mixture noise Amsterdam [u.a.] volume:39 year:2019 number:14 pages:3981-3987 extent:7 |
sourceStr |
Enthalten in Improved differential evolution for RSSD-based localization in Gaussian mixture noise Amsterdam [u.a.] volume:39 year:2019 number:14 pages:3981-3987 extent:7 |
format_phy_str_mv |
Article |
bklname |
Informatik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Silicon carbide Molybdenum disilicide Sintering temperature Electrical percolation Grain boundary |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
authorswithroles_txt_mv |
Zheng, Jia-Qi @@aut@@ Chen, Jian @@oth@@ Zhang, Bu-Hao @@oth@@ Liu, Xue-Jian @@oth@@ Chen, Zhong-Ming @@oth@@ Wu, Hai-Bo @@oth@@ Huang, Zheng-Ren @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV009961755 |
dewey-sort |
14 |
id |
ELV047273801 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047273801</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626015321.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jeurceramsoc.2019.05.019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000676.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047273801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0955-2219(19)30325-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zheng, Jia-Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Silicon carbide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Molybdenum disilicide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sintering temperature</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrical percolation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grain boundary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Jian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Bu-Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xue-Jian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Zhong-Ming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Hai-Bo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zheng-Ren</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhang, Yuanyuan ELSEVIER</subfield><subfield code="t">Improved differential evolution for RSSD-based localization in Gaussian mixture noise</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009961755</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:14</subfield><subfield code="g">pages:3981-3987</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jeurceramsoc.2019.05.019</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2019</subfield><subfield code="e">14</subfield><subfield code="h">3981-3987</subfield><subfield code="g">7</subfield></datafield></record></collection>
|
author |
Zheng, Jia-Qi |
spellingShingle |
Zheng, Jia-Qi ddc 004 bkl 54.00 Elsevier Silicon carbide Elsevier Molybdenum disilicide Elsevier Sintering temperature Elsevier Electrical percolation Elsevier Grain boundary Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature |
authorStr |
Zheng, Jia-Qi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV009961755 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 VZ 54.00 bkl Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature Silicon carbide Elsevier Molybdenum disilicide Elsevier Sintering temperature Elsevier Electrical percolation Elsevier Grain boundary Elsevier |
topic |
ddc 004 bkl 54.00 Elsevier Silicon carbide Elsevier Molybdenum disilicide Elsevier Sintering temperature Elsevier Electrical percolation Elsevier Grain boundary |
topic_unstemmed |
ddc 004 bkl 54.00 Elsevier Silicon carbide Elsevier Molybdenum disilicide Elsevier Sintering temperature Elsevier Electrical percolation Elsevier Grain boundary |
topic_browse |
ddc 004 bkl 54.00 Elsevier Silicon carbide Elsevier Molybdenum disilicide Elsevier Sintering temperature Elsevier Electrical percolation Elsevier Grain boundary |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j c jc b h z bhz x j l xjl z m c zmc h b w hbw z r h zrh |
hierarchy_parent_title |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
hierarchy_parent_id |
ELV009961755 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV009961755 |
title |
Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature |
ctrlnum |
(DE-627)ELV047273801 (ELSEVIER)S0955-2219(19)30325-5 |
title_full |
Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature |
author_sort |
Zheng, Jia-Qi |
journal |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
journalStr |
Improved differential evolution for RSSD-based localization in Gaussian mixture noise |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
3981 |
author_browse |
Zheng, Jia-Qi |
container_volume |
39 |
physical |
7 |
class |
004 VZ 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zheng, Jia-Qi |
doi_str_mv |
10.1016/j.jeurceramsoc.2019.05.019 |
dewey-full |
004 |
title_sort |
electrical percolation and infrared emissivity of pressureless sintered sic-mosi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature |
title_auth |
Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature |
abstract |
SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. |
abstractGer |
SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. |
abstract_unstemmed |
SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
14 |
title_short |
Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature |
url |
https://doi.org/10.1016/j.jeurceramsoc.2019.05.019 |
remote_bool |
true |
author2 |
Chen, Jian Zhang, Bu-Hao Liu, Xue-Jian Chen, Zhong-Ming Wu, Hai-Bo Huang, Zheng-Ren |
author2Str |
Chen, Jian Zhang, Bu-Hao Liu, Xue-Jian Chen, Zhong-Ming Wu, Hai-Bo Huang, Zheng-Ren |
ppnlink |
ELV009961755 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.jeurceramsoc.2019.05.019 |
up_date |
2024-07-06T22:26:39.789Z |
_version_ |
1803870325744599040 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047273801</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626015321.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jeurceramsoc.2019.05.019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000676.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047273801</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0955-2219(19)30325-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zheng, Jia-Qi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Electrical percolation and infrared emissivity of pressureless sintered SiC-MoSi<ce:inf loc="post">2</ce:inf> composites tailored by sintering temperature</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">7</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">SiC-MoSi2 composites with low electrical resistivity and high infrared emissivity were fabricated via pressureless sintering. The relationship between microstructure evolution and electrical behaviors along with infrared emission properties of the resulting composites is investigated at various sintering temperatures. The electrical resistivity undergoes two significant drops with increasing sintering temperature. Pore elimination bears responsible for the initial decrease in electrical resistivity. Transmission electron microscopy (TEM) observation manifests that the thinned amorphous layers at SiC/MoSi2 interface decrease grain boundary resistivity and allow for electrical percolation to occur when sintering temperature further rises. Additionally, increasing sintering temperature leads to a higher infrared emissivity owing to the formation of Mo4.8Si3C0.6 and the decreased boundaries. The lowest electrical resistivity of 7.2 Ω cm and the highest infrared emissivity of 0.721 are recorded for composite sintered at 2000 ℃. Overall, SiC-MoSi2 composites exhibit a promising prospect as infrared source elements that must endure harsh environments.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Silicon carbide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Molybdenum disilicide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sintering temperature</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrical percolation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Grain boundary</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Jian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Bu-Hao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xue-Jian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Zhong-Ming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Hai-Bo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Zheng-Ren</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Zhang, Yuanyuan ELSEVIER</subfield><subfield code="t">Improved differential evolution for RSSD-based localization in Gaussian mixture noise</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009961755</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:14</subfield><subfield code="g">pages:3981-3987</subfield><subfield code="g">extent:7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jeurceramsoc.2019.05.019</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="j">Informatik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2019</subfield><subfield code="e">14</subfield><subfield code="h">3981-3987</subfield><subfield code="g">7</subfield></datafield></record></collection>
|
score |
7.400654 |