The Sylow structure of scalar automorphism groups
We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is p...
Ausführliche Beschreibung
Autor*in: |
Herfort, Wolfgang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
18 |
---|
Übergeordnetes Werk: |
Enthalten in: Frequent mutations in the RPL22 gene and its clinical and functional implications - 2013, a journal devoted to general, geometric, set-theoretic and algebraic topology, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:263 ; year:2019 ; day:15 ; month:08 ; pages:26-43 ; extent:18 |
Links: |
---|
DOI / URN: |
10.1016/j.topol.2019.05.027 |
---|
Katalog-ID: |
ELV047311797 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV047311797 | ||
003 | DE-627 | ||
005 | 20230626015419.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191021s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.topol.2019.05.027 |2 doi | |
028 | 5 | 2 | |a GBV00000000000682.pica |
035 | |a (DE-627)ELV047311797 | ||
035 | |a (ELSEVIER)S0166-8641(19)30163-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.11 |2 bkl | ||
100 | 1 | |a Herfort, Wolfgang |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Sylow structure of scalar automorphism groups |
264 | 1 | |c 2019transfer abstract | |
300 | |a 18 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. | ||
520 | |a We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. | ||
650 | 7 | |a 05C63 |2 Elsevier | |
650 | 7 | |a 20E18 |2 Elsevier | |
650 | 7 | |a 05C25 |2 Elsevier | |
650 | 7 | |a 20E36 |2 Elsevier | |
650 | 7 | |a 22B05 |2 Elsevier | |
700 | 1 | |a Hofmann, Karl H. |4 oth | |
700 | 1 | |a Kramer, Linus |4 oth | |
700 | 1 | |a Russo, Francesco G. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |t Frequent mutations in the RPL22 gene and its clinical and functional implications |d 2013 |d a journal devoted to general, geometric, set-theoretic and algebraic topology |g Amsterdam [u.a.] |w (DE-627)ELV011305770 |
773 | 1 | 8 | |g volume:263 |g year:2019 |g day:15 |g month:08 |g pages:26-43 |g extent:18 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.topol.2019.05.027 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_252 | ||
936 | b | k | |a 44.11 |j Präventivmedizin |q VZ |
951 | |a AR | ||
952 | |d 263 |j 2019 |b 15 |c 0815 |h 26-43 |g 18 |
author_variant |
w h wh |
---|---|
matchkey_str |
herfortwolfganghofmannkarlhkramerlinusru:2019----:hslwtutrosaaatm |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
44.11 |
publishDate |
2019 |
allfields |
10.1016/j.topol.2019.05.027 doi GBV00000000000682.pica (DE-627)ELV047311797 (ELSEVIER)S0166-8641(19)30163-4 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.11 bkl Herfort, Wolfgang verfasserin aut The Sylow structure of scalar automorphism groups 2019transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. 05C63 Elsevier 20E18 Elsevier 05C25 Elsevier 20E36 Elsevier 22B05 Elsevier Hofmann, Karl H. oth Kramer, Linus oth Russo, Francesco G. oth Enthalten in Elsevier Frequent mutations in the RPL22 gene and its clinical and functional implications 2013 a journal devoted to general, geometric, set-theoretic and algebraic topology Amsterdam [u.a.] (DE-627)ELV011305770 volume:263 year:2019 day:15 month:08 pages:26-43 extent:18 https://doi.org/10.1016/j.topol.2019.05.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 GBV_ILN_62 GBV_ILN_73 GBV_ILN_252 44.11 Präventivmedizin VZ AR 263 2019 15 0815 26-43 18 |
spelling |
10.1016/j.topol.2019.05.027 doi GBV00000000000682.pica (DE-627)ELV047311797 (ELSEVIER)S0166-8641(19)30163-4 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.11 bkl Herfort, Wolfgang verfasserin aut The Sylow structure of scalar automorphism groups 2019transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. 05C63 Elsevier 20E18 Elsevier 05C25 Elsevier 20E36 Elsevier 22B05 Elsevier Hofmann, Karl H. oth Kramer, Linus oth Russo, Francesco G. oth Enthalten in Elsevier Frequent mutations in the RPL22 gene and its clinical and functional implications 2013 a journal devoted to general, geometric, set-theoretic and algebraic topology Amsterdam [u.a.] (DE-627)ELV011305770 volume:263 year:2019 day:15 month:08 pages:26-43 extent:18 https://doi.org/10.1016/j.topol.2019.05.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 GBV_ILN_62 GBV_ILN_73 GBV_ILN_252 44.11 Präventivmedizin VZ AR 263 2019 15 0815 26-43 18 |
allfields_unstemmed |
10.1016/j.topol.2019.05.027 doi GBV00000000000682.pica (DE-627)ELV047311797 (ELSEVIER)S0166-8641(19)30163-4 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.11 bkl Herfort, Wolfgang verfasserin aut The Sylow structure of scalar automorphism groups 2019transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. 05C63 Elsevier 20E18 Elsevier 05C25 Elsevier 20E36 Elsevier 22B05 Elsevier Hofmann, Karl H. oth Kramer, Linus oth Russo, Francesco G. oth Enthalten in Elsevier Frequent mutations in the RPL22 gene and its clinical and functional implications 2013 a journal devoted to general, geometric, set-theoretic and algebraic topology Amsterdam [u.a.] (DE-627)ELV011305770 volume:263 year:2019 day:15 month:08 pages:26-43 extent:18 https://doi.org/10.1016/j.topol.2019.05.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 GBV_ILN_62 GBV_ILN_73 GBV_ILN_252 44.11 Präventivmedizin VZ AR 263 2019 15 0815 26-43 18 |
allfieldsGer |
10.1016/j.topol.2019.05.027 doi GBV00000000000682.pica (DE-627)ELV047311797 (ELSEVIER)S0166-8641(19)30163-4 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.11 bkl Herfort, Wolfgang verfasserin aut The Sylow structure of scalar automorphism groups 2019transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. 05C63 Elsevier 20E18 Elsevier 05C25 Elsevier 20E36 Elsevier 22B05 Elsevier Hofmann, Karl H. oth Kramer, Linus oth Russo, Francesco G. oth Enthalten in Elsevier Frequent mutations in the RPL22 gene and its clinical and functional implications 2013 a journal devoted to general, geometric, set-theoretic and algebraic topology Amsterdam [u.a.] (DE-627)ELV011305770 volume:263 year:2019 day:15 month:08 pages:26-43 extent:18 https://doi.org/10.1016/j.topol.2019.05.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 GBV_ILN_62 GBV_ILN_73 GBV_ILN_252 44.11 Präventivmedizin VZ AR 263 2019 15 0815 26-43 18 |
allfieldsSound |
10.1016/j.topol.2019.05.027 doi GBV00000000000682.pica (DE-627)ELV047311797 (ELSEVIER)S0166-8641(19)30163-4 DE-627 ger DE-627 rakwb eng 610 VZ 610 VZ 44.11 bkl Herfort, Wolfgang verfasserin aut The Sylow structure of scalar automorphism groups 2019transfer abstract 18 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. 05C63 Elsevier 20E18 Elsevier 05C25 Elsevier 20E36 Elsevier 22B05 Elsevier Hofmann, Karl H. oth Kramer, Linus oth Russo, Francesco G. oth Enthalten in Elsevier Frequent mutations in the RPL22 gene and its clinical and functional implications 2013 a journal devoted to general, geometric, set-theoretic and algebraic topology Amsterdam [u.a.] (DE-627)ELV011305770 volume:263 year:2019 day:15 month:08 pages:26-43 extent:18 https://doi.org/10.1016/j.topol.2019.05.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 GBV_ILN_62 GBV_ILN_73 GBV_ILN_252 44.11 Präventivmedizin VZ AR 263 2019 15 0815 26-43 18 |
language |
English |
source |
Enthalten in Frequent mutations in the RPL22 gene and its clinical and functional implications Amsterdam [u.a.] volume:263 year:2019 day:15 month:08 pages:26-43 extent:18 |
sourceStr |
Enthalten in Frequent mutations in the RPL22 gene and its clinical and functional implications Amsterdam [u.a.] volume:263 year:2019 day:15 month:08 pages:26-43 extent:18 |
format_phy_str_mv |
Article |
bklname |
Präventivmedizin |
institution |
findex.gbv.de |
topic_facet |
05C63 20E18 05C25 20E36 22B05 |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Frequent mutations in the RPL22 gene and its clinical and functional implications |
authorswithroles_txt_mv |
Herfort, Wolfgang @@aut@@ Hofmann, Karl H. @@oth@@ Kramer, Linus @@oth@@ Russo, Francesco G. @@oth@@ |
publishDateDaySort_date |
2019-01-15T00:00:00Z |
hierarchy_top_id |
ELV011305770 |
dewey-sort |
3610 |
id |
ELV047311797 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047311797</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626015419.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.topol.2019.05.027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000682.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047311797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0166-8641(19)30163-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Herfort, Wolfgang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Sylow structure of scalar automorphism groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">05C63</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">20E18</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">05C25</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">20E36</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">22B05</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hofmann, Karl H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kramer, Linus</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russo, Francesco G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="t">Frequent mutations in the RPL22 gene and its clinical and functional implications</subfield><subfield code="d">2013</subfield><subfield code="d">a journal devoted to general, geometric, set-theoretic and algebraic topology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011305770</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:263</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:15</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:26-43</subfield><subfield code="g">extent:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.topol.2019.05.027</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.11</subfield><subfield code="j">Präventivmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">263</subfield><subfield code="j">2019</subfield><subfield code="b">15</subfield><subfield code="c">0815</subfield><subfield code="h">26-43</subfield><subfield code="g">18</subfield></datafield></record></collection>
|
author |
Herfort, Wolfgang |
spellingShingle |
Herfort, Wolfgang ddc 610 bkl 44.11 Elsevier 05C63 Elsevier 20E18 Elsevier 05C25 Elsevier 20E36 Elsevier 22B05 The Sylow structure of scalar automorphism groups |
authorStr |
Herfort, Wolfgang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV011305770 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.11 bkl The Sylow structure of scalar automorphism groups 05C63 Elsevier 20E18 Elsevier 05C25 Elsevier 20E36 Elsevier 22B05 Elsevier |
topic |
ddc 610 bkl 44.11 Elsevier 05C63 Elsevier 20E18 Elsevier 05C25 Elsevier 20E36 Elsevier 22B05 |
topic_unstemmed |
ddc 610 bkl 44.11 Elsevier 05C63 Elsevier 20E18 Elsevier 05C25 Elsevier 20E36 Elsevier 22B05 |
topic_browse |
ddc 610 bkl 44.11 Elsevier 05C63 Elsevier 20E18 Elsevier 05C25 Elsevier 20E36 Elsevier 22B05 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
k h h kh khh l k lk f g r fg fgr |
hierarchy_parent_title |
Frequent mutations in the RPL22 gene and its clinical and functional implications |
hierarchy_parent_id |
ELV011305770 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Frequent mutations in the RPL22 gene and its clinical and functional implications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV011305770 |
title |
The Sylow structure of scalar automorphism groups |
ctrlnum |
(DE-627)ELV047311797 (ELSEVIER)S0166-8641(19)30163-4 |
title_full |
The Sylow structure of scalar automorphism groups |
author_sort |
Herfort, Wolfgang |
journal |
Frequent mutations in the RPL22 gene and its clinical and functional implications |
journalStr |
Frequent mutations in the RPL22 gene and its clinical and functional implications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
26 |
author_browse |
Herfort, Wolfgang |
container_volume |
263 |
physical |
18 |
class |
610 VZ 44.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Herfort, Wolfgang |
doi_str_mv |
10.1016/j.topol.2019.05.027 |
dewey-full |
610 |
title_sort |
sylow structure of scalar automorphism groups |
title_auth |
The Sylow structure of scalar automorphism groups |
abstract |
We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. |
abstractGer |
We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. |
abstract_unstemmed |
We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 GBV_ILN_62 GBV_ILN_73 GBV_ILN_252 |
title_short |
The Sylow structure of scalar automorphism groups |
url |
https://doi.org/10.1016/j.topol.2019.05.027 |
remote_bool |
true |
author2 |
Hofmann, Karl H. Kramer, Linus Russo, Francesco G. |
author2Str |
Hofmann, Karl H. Kramer, Linus Russo, Francesco G. |
ppnlink |
ELV011305770 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.topol.2019.05.027 |
up_date |
2024-07-06T22:33:04.557Z |
_version_ |
1803870729204137984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047311797</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626015419.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.topol.2019.05.027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000682.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047311797</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0166-8641(19)30163-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Herfort, Wolfgang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Sylow structure of scalar automorphism groups</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">18</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We shall review basically known facts about periodic locally compact abelian groups. For any periodic locally compact abelian group A, its automorphism group contains (as a subgroup) those automorphisms that leave invariant every closed subgroup of A; to be denoted by SAut ( A ) . This subgroup is profinite in the g-Arens topology and hence allows a decomposition into its p-primary subgroups for the primes p for which topological p-elements in this automorphism subgroup exist. The interplay between the p-primary decomposition of SAut ( A ) and A can be encoded in a bipartite graph, the mastergraph of A. Properties and applications of this concept are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">05C63</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">20E18</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">05C25</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">20E36</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">22B05</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hofmann, Karl H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kramer, Linus</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russo, Francesco G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="t">Frequent mutations in the RPL22 gene and its clinical and functional implications</subfield><subfield code="d">2013</subfield><subfield code="d">a journal devoted to general, geometric, set-theoretic and algebraic topology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011305770</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:263</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:15</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:26-43</subfield><subfield code="g">extent:18</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.topol.2019.05.027</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.11</subfield><subfield code="j">Präventivmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">263</subfield><subfield code="j">2019</subfield><subfield code="b">15</subfield><subfield code="c">0815</subfield><subfield code="h">26-43</subfield><subfield code="g">18</subfield></datafield></record></collection>
|
score |
7.4016743 |