A modified conjugate gradient method for monotone nonlinear equations with convex constraints
In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by A...
Ausführliche Beschreibung
Autor*in: |
Awwal, Aliyu Muhammed [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
14 |
---|
Übergeordnetes Werk: |
Enthalten in: Impact of rogue active regions on hemispheric asymmetry - Nagy, Melinda ELSEVIER, 2018, transactions of IMACS, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:145 ; year:2019 ; pages:507-520 ; extent:14 |
Links: |
---|
DOI / URN: |
10.1016/j.apnum.2019.05.012 |
---|
Katalog-ID: |
ELV047535407 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV047535407 | ||
003 | DE-627 | ||
005 | 20230626015909.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191021s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.apnum.2019.05.012 |2 doi | |
028 | 5 | 2 | |a GBV00000000000711.pica |
035 | |a (DE-627)ELV047535407 | ||
035 | |a (ELSEVIER)S0168-9274(19)30119-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 520 |a 620 |q VZ |
084 | |a 39.00 |2 bkl | ||
084 | |a 50.93 |2 bkl | ||
100 | 1 | |a Awwal, Aliyu Muhammed |e verfasserin |4 aut | |
245 | 1 | 0 | |a A modified conjugate gradient method for monotone nonlinear equations with convex constraints |
264 | 1 | |c 2019transfer abstract | |
300 | |a 14 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. | ||
520 | |a In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. | ||
650 | 7 | |a Projection method |2 Elsevier | |
650 | 7 | |a Nonlinear monotone equations |2 Elsevier | |
650 | 7 | |a Compressive sensing |2 Elsevier | |
650 | 7 | |a Spectral gradient method |2 Elsevier | |
700 | 1 | |a Kumam, Poom |4 oth | |
700 | 1 | |a Abubakar, Auwal Bala |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Nagy, Melinda ELSEVIER |t Impact of rogue active regions on hemispheric asymmetry |d 2018 |d transactions of IMACS |g Amsterdam [u.a.] |w (DE-627)ELV001550608 |
773 | 1 | 8 | |g volume:145 |g year:2019 |g pages:507-520 |g extent:14 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.apnum.2019.05.012 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-AST | ||
936 | b | k | |a 39.00 |j Astronomie: Allgemeines |q VZ |
936 | b | k | |a 50.93 |j Weltraumforschung |q VZ |
951 | |a AR | ||
952 | |d 145 |j 2019 |h 507-520 |g 14 |
author_variant |
a m a am ama |
---|---|
matchkey_str |
awwalaliyumuhammedkumampoomabubakarauwal:2019----:mdfecnuaerdetehdomntnnnierqain |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
39.00 50.93 |
publishDate |
2019 |
allfields |
10.1016/j.apnum.2019.05.012 doi GBV00000000000711.pica (DE-627)ELV047535407 (ELSEVIER)S0168-9274(19)30119-9 DE-627 ger DE-627 rakwb eng 520 620 VZ 39.00 bkl 50.93 bkl Awwal, Aliyu Muhammed verfasserin aut A modified conjugate gradient method for monotone nonlinear equations with convex constraints 2019transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. Projection method Elsevier Nonlinear monotone equations Elsevier Compressive sensing Elsevier Spectral gradient method Elsevier Kumam, Poom oth Abubakar, Auwal Bala oth Enthalten in Elsevier Nagy, Melinda ELSEVIER Impact of rogue active regions on hemispheric asymmetry 2018 transactions of IMACS Amsterdam [u.a.] (DE-627)ELV001550608 volume:145 year:2019 pages:507-520 extent:14 https://doi.org/10.1016/j.apnum.2019.05.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-AST 39.00 Astronomie: Allgemeines VZ 50.93 Weltraumforschung VZ AR 145 2019 507-520 14 |
spelling |
10.1016/j.apnum.2019.05.012 doi GBV00000000000711.pica (DE-627)ELV047535407 (ELSEVIER)S0168-9274(19)30119-9 DE-627 ger DE-627 rakwb eng 520 620 VZ 39.00 bkl 50.93 bkl Awwal, Aliyu Muhammed verfasserin aut A modified conjugate gradient method for monotone nonlinear equations with convex constraints 2019transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. Projection method Elsevier Nonlinear monotone equations Elsevier Compressive sensing Elsevier Spectral gradient method Elsevier Kumam, Poom oth Abubakar, Auwal Bala oth Enthalten in Elsevier Nagy, Melinda ELSEVIER Impact of rogue active regions on hemispheric asymmetry 2018 transactions of IMACS Amsterdam [u.a.] (DE-627)ELV001550608 volume:145 year:2019 pages:507-520 extent:14 https://doi.org/10.1016/j.apnum.2019.05.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-AST 39.00 Astronomie: Allgemeines VZ 50.93 Weltraumforschung VZ AR 145 2019 507-520 14 |
allfields_unstemmed |
10.1016/j.apnum.2019.05.012 doi GBV00000000000711.pica (DE-627)ELV047535407 (ELSEVIER)S0168-9274(19)30119-9 DE-627 ger DE-627 rakwb eng 520 620 VZ 39.00 bkl 50.93 bkl Awwal, Aliyu Muhammed verfasserin aut A modified conjugate gradient method for monotone nonlinear equations with convex constraints 2019transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. Projection method Elsevier Nonlinear monotone equations Elsevier Compressive sensing Elsevier Spectral gradient method Elsevier Kumam, Poom oth Abubakar, Auwal Bala oth Enthalten in Elsevier Nagy, Melinda ELSEVIER Impact of rogue active regions on hemispheric asymmetry 2018 transactions of IMACS Amsterdam [u.a.] (DE-627)ELV001550608 volume:145 year:2019 pages:507-520 extent:14 https://doi.org/10.1016/j.apnum.2019.05.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-AST 39.00 Astronomie: Allgemeines VZ 50.93 Weltraumforschung VZ AR 145 2019 507-520 14 |
allfieldsGer |
10.1016/j.apnum.2019.05.012 doi GBV00000000000711.pica (DE-627)ELV047535407 (ELSEVIER)S0168-9274(19)30119-9 DE-627 ger DE-627 rakwb eng 520 620 VZ 39.00 bkl 50.93 bkl Awwal, Aliyu Muhammed verfasserin aut A modified conjugate gradient method for monotone nonlinear equations with convex constraints 2019transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. Projection method Elsevier Nonlinear monotone equations Elsevier Compressive sensing Elsevier Spectral gradient method Elsevier Kumam, Poom oth Abubakar, Auwal Bala oth Enthalten in Elsevier Nagy, Melinda ELSEVIER Impact of rogue active regions on hemispheric asymmetry 2018 transactions of IMACS Amsterdam [u.a.] (DE-627)ELV001550608 volume:145 year:2019 pages:507-520 extent:14 https://doi.org/10.1016/j.apnum.2019.05.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-AST 39.00 Astronomie: Allgemeines VZ 50.93 Weltraumforschung VZ AR 145 2019 507-520 14 |
allfieldsSound |
10.1016/j.apnum.2019.05.012 doi GBV00000000000711.pica (DE-627)ELV047535407 (ELSEVIER)S0168-9274(19)30119-9 DE-627 ger DE-627 rakwb eng 520 620 VZ 39.00 bkl 50.93 bkl Awwal, Aliyu Muhammed verfasserin aut A modified conjugate gradient method for monotone nonlinear equations with convex constraints 2019transfer abstract 14 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. Projection method Elsevier Nonlinear monotone equations Elsevier Compressive sensing Elsevier Spectral gradient method Elsevier Kumam, Poom oth Abubakar, Auwal Bala oth Enthalten in Elsevier Nagy, Melinda ELSEVIER Impact of rogue active regions on hemispheric asymmetry 2018 transactions of IMACS Amsterdam [u.a.] (DE-627)ELV001550608 volume:145 year:2019 pages:507-520 extent:14 https://doi.org/10.1016/j.apnum.2019.05.012 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-AST 39.00 Astronomie: Allgemeines VZ 50.93 Weltraumforschung VZ AR 145 2019 507-520 14 |
language |
English |
source |
Enthalten in Impact of rogue active regions on hemispheric asymmetry Amsterdam [u.a.] volume:145 year:2019 pages:507-520 extent:14 |
sourceStr |
Enthalten in Impact of rogue active regions on hemispheric asymmetry Amsterdam [u.a.] volume:145 year:2019 pages:507-520 extent:14 |
format_phy_str_mv |
Article |
bklname |
Astronomie: Allgemeines Weltraumforschung |
institution |
findex.gbv.de |
topic_facet |
Projection method Nonlinear monotone equations Compressive sensing Spectral gradient method |
dewey-raw |
520 |
isfreeaccess_bool |
false |
container_title |
Impact of rogue active regions on hemispheric asymmetry |
authorswithroles_txt_mv |
Awwal, Aliyu Muhammed @@aut@@ Kumam, Poom @@oth@@ Abubakar, Auwal Bala @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV001550608 |
dewey-sort |
3520 |
id |
ELV047535407 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047535407</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626015909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apnum.2019.05.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000711.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047535407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9274(19)30119-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.93</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Awwal, Aliyu Muhammed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A modified conjugate gradient method for monotone nonlinear equations with convex constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Projection method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear monotone equations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compressive sensing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spectral gradient method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumam, Poom</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abubakar, Auwal Bala</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Nagy, Melinda ELSEVIER</subfield><subfield code="t">Impact of rogue active regions on hemispheric asymmetry</subfield><subfield code="d">2018</subfield><subfield code="d">transactions of IMACS</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001550608</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:145</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:507-520</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.apnum.2019.05.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.00</subfield><subfield code="j">Astronomie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.93</subfield><subfield code="j">Weltraumforschung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">145</subfield><subfield code="j">2019</subfield><subfield code="h">507-520</subfield><subfield code="g">14</subfield></datafield></record></collection>
|
author |
Awwal, Aliyu Muhammed |
spellingShingle |
Awwal, Aliyu Muhammed ddc 520 bkl 39.00 bkl 50.93 Elsevier Projection method Elsevier Nonlinear monotone equations Elsevier Compressive sensing Elsevier Spectral gradient method A modified conjugate gradient method for monotone nonlinear equations with convex constraints |
authorStr |
Awwal, Aliyu Muhammed |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001550608 |
format |
electronic Article |
dewey-ones |
520 - Astronomy & allied sciences 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
520 620 VZ 39.00 bkl 50.93 bkl A modified conjugate gradient method for monotone nonlinear equations with convex constraints Projection method Elsevier Nonlinear monotone equations Elsevier Compressive sensing Elsevier Spectral gradient method Elsevier |
topic |
ddc 520 bkl 39.00 bkl 50.93 Elsevier Projection method Elsevier Nonlinear monotone equations Elsevier Compressive sensing Elsevier Spectral gradient method |
topic_unstemmed |
ddc 520 bkl 39.00 bkl 50.93 Elsevier Projection method Elsevier Nonlinear monotone equations Elsevier Compressive sensing Elsevier Spectral gradient method |
topic_browse |
ddc 520 bkl 39.00 bkl 50.93 Elsevier Projection method Elsevier Nonlinear monotone equations Elsevier Compressive sensing Elsevier Spectral gradient method |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p k pk a b a ab aba |
hierarchy_parent_title |
Impact of rogue active regions on hemispheric asymmetry |
hierarchy_parent_id |
ELV001550608 |
dewey-tens |
520 - Astronomy 620 - Engineering |
hierarchy_top_title |
Impact of rogue active regions on hemispheric asymmetry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001550608 |
title |
A modified conjugate gradient method for monotone nonlinear equations with convex constraints |
ctrlnum |
(DE-627)ELV047535407 (ELSEVIER)S0168-9274(19)30119-9 |
title_full |
A modified conjugate gradient method for monotone nonlinear equations with convex constraints |
author_sort |
Awwal, Aliyu Muhammed |
journal |
Impact of rogue active regions on hemispheric asymmetry |
journalStr |
Impact of rogue active regions on hemispheric asymmetry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
507 |
author_browse |
Awwal, Aliyu Muhammed |
container_volume |
145 |
physical |
14 |
class |
520 620 VZ 39.00 bkl 50.93 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Awwal, Aliyu Muhammed |
doi_str_mv |
10.1016/j.apnum.2019.05.012 |
dewey-full |
520 620 |
title_sort |
a modified conjugate gradient method for monotone nonlinear equations with convex constraints |
title_auth |
A modified conjugate gradient method for monotone nonlinear equations with convex constraints |
abstract |
In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. |
abstractGer |
In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. |
abstract_unstemmed |
In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-AST |
title_short |
A modified conjugate gradient method for monotone nonlinear equations with convex constraints |
url |
https://doi.org/10.1016/j.apnum.2019.05.012 |
remote_bool |
true |
author2 |
Kumam, Poom Abubakar, Auwal Bala |
author2Str |
Kumam, Poom Abubakar, Auwal Bala |
ppnlink |
ELV001550608 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.apnum.2019.05.012 |
up_date |
2024-07-06T23:09:11.964Z |
_version_ |
1803873001895100416 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047535407</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626015909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191021s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apnum.2019.05.012</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000711.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047535407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9274(19)30119-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">520</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.93</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Awwal, Aliyu Muhammed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A modified conjugate gradient method for monotone nonlinear equations with convex constraints</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">14</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this paper, a modified Hestenes-Stiefel (HS) spectral conjugate gradient (CG) method for monotone nonlinear equations with convex constraints is proposed based on projection technique. The method can be viewed as an extension of a modified HS-CG method for unconstrained optimization proposed by Amini et al. (Optimization Methods and Software, pp: 1-13, 2018). A new search direction is obtained by incorporating the idea of spectral gradient parameter and some modification of the conjugate gradient parameter. The proposed method is derivative-free and requires low memory which makes it suitable for large scale monotone nonlinear equations. Global convergence of the method is established under suitable assumptions. Preliminary numerical comparisons with some existing methods are given to show the efficiency of our proposed method. Furthermore, the proposed method is successfully applied to solve sparse signal reconstruction in compressive sensing.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Projection method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear monotone equations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compressive sensing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spectral gradient method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumam, Poom</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abubakar, Auwal Bala</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Nagy, Melinda ELSEVIER</subfield><subfield code="t">Impact of rogue active regions on hemispheric asymmetry</subfield><subfield code="d">2018</subfield><subfield code="d">transactions of IMACS</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001550608</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:145</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:507-520</subfield><subfield code="g">extent:14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.apnum.2019.05.012</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.00</subfield><subfield code="j">Astronomie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.93</subfield><subfield code="j">Weltraumforschung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">145</subfield><subfield code="j">2019</subfield><subfield code="h">507-520</subfield><subfield code="g">14</subfield></datafield></record></collection>
|
score |
7.4009514 |