A model predictive vertical motion control of a passenger ship
In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system...
Ausführliche Beschreibung
Autor*in: |
Kucukdemiral, Ibrahim Beklan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy - Chang, Guanru ELSEVIER, 2015, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:186 ; year:2019 ; day:15 ; month:08 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.oceaneng.2019.06.005 |
---|
Katalog-ID: |
ELV047575336 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV047575336 | ||
003 | DE-627 | ||
005 | 20230626015957.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191022s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.oceaneng.2019.06.005 |2 doi | |
028 | 5 | 2 | |a GBV00000000000761.pica |
035 | |a (DE-627)ELV047575336 | ||
035 | |a (ELSEVIER)S0029-8018(19)30302-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.13 |2 bkl | ||
100 | 1 | |a Kucukdemiral, Ibrahim Beklan |e verfasserin |4 aut | |
245 | 1 | 0 | |a A model predictive vertical motion control of a passenger ship |
264 | 1 | |c 2019transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. | ||
520 | |a In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. | ||
650 | 7 | |a Model predictive control |2 Elsevier | |
650 | 7 | |a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control |2 Elsevier | |
650 | 7 | |a Irregular sea waves |2 Elsevier | |
650 | 7 | |a Seasickness |2 Elsevier | |
650 | 7 | |a Magnitude and rate saturated actuators |2 Elsevier | |
650 | 7 | |a Vertical motion of ship |2 Elsevier | |
700 | 1 | |a Cakici, Ferdi |4 oth | |
700 | 1 | |a Yazici, Hakan |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Chang, Guanru ELSEVIER |t Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy |d 2015 |g Amsterdam [u.a.] |w (DE-627)ELV01276728X |
773 | 1 | 8 | |g volume:186 |g year:2019 |g day:15 |g month:08 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.oceaneng.2019.06.005 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 42.13 |j Molekularbiologie |q VZ |
951 | |a AR | ||
952 | |d 186 |j 2019 |b 15 |c 0815 |h 0 |
author_variant |
i b k ib ibk |
---|---|
matchkey_str |
kucukdemiralibrahimbeklancakiciferdiyazi:2019----:mdlrdcieetcloinotoo |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
42.13 |
publishDate |
2019 |
allfields |
10.1016/j.oceaneng.2019.06.005 doi GBV00000000000761.pica (DE-627)ELV047575336 (ELSEVIER)S0029-8018(19)30302-6 DE-627 ger DE-627 rakwb eng 540 VZ 660 VZ 540 VZ BIODIV DE-30 fid 42.13 bkl Kucukdemiral, Ibrahim Beklan verfasserin aut A model predictive vertical motion control of a passenger ship 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. Model predictive control Elsevier <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control Elsevier Irregular sea waves Elsevier Seasickness Elsevier Magnitude and rate saturated actuators Elsevier Vertical motion of ship Elsevier Cakici, Ferdi oth Yazici, Hakan oth Enthalten in Elsevier Science Chang, Guanru ELSEVIER Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy 2015 Amsterdam [u.a.] (DE-627)ELV01276728X volume:186 year:2019 day:15 month:08 pages:0 https://doi.org/10.1016/j.oceaneng.2019.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 186 2019 15 0815 0 |
spelling |
10.1016/j.oceaneng.2019.06.005 doi GBV00000000000761.pica (DE-627)ELV047575336 (ELSEVIER)S0029-8018(19)30302-6 DE-627 ger DE-627 rakwb eng 540 VZ 660 VZ 540 VZ BIODIV DE-30 fid 42.13 bkl Kucukdemiral, Ibrahim Beklan verfasserin aut A model predictive vertical motion control of a passenger ship 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. Model predictive control Elsevier <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control Elsevier Irregular sea waves Elsevier Seasickness Elsevier Magnitude and rate saturated actuators Elsevier Vertical motion of ship Elsevier Cakici, Ferdi oth Yazici, Hakan oth Enthalten in Elsevier Science Chang, Guanru ELSEVIER Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy 2015 Amsterdam [u.a.] (DE-627)ELV01276728X volume:186 year:2019 day:15 month:08 pages:0 https://doi.org/10.1016/j.oceaneng.2019.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 186 2019 15 0815 0 |
allfields_unstemmed |
10.1016/j.oceaneng.2019.06.005 doi GBV00000000000761.pica (DE-627)ELV047575336 (ELSEVIER)S0029-8018(19)30302-6 DE-627 ger DE-627 rakwb eng 540 VZ 660 VZ 540 VZ BIODIV DE-30 fid 42.13 bkl Kucukdemiral, Ibrahim Beklan verfasserin aut A model predictive vertical motion control of a passenger ship 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. Model predictive control Elsevier <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control Elsevier Irregular sea waves Elsevier Seasickness Elsevier Magnitude and rate saturated actuators Elsevier Vertical motion of ship Elsevier Cakici, Ferdi oth Yazici, Hakan oth Enthalten in Elsevier Science Chang, Guanru ELSEVIER Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy 2015 Amsterdam [u.a.] (DE-627)ELV01276728X volume:186 year:2019 day:15 month:08 pages:0 https://doi.org/10.1016/j.oceaneng.2019.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 186 2019 15 0815 0 |
allfieldsGer |
10.1016/j.oceaneng.2019.06.005 doi GBV00000000000761.pica (DE-627)ELV047575336 (ELSEVIER)S0029-8018(19)30302-6 DE-627 ger DE-627 rakwb eng 540 VZ 660 VZ 540 VZ BIODIV DE-30 fid 42.13 bkl Kucukdemiral, Ibrahim Beklan verfasserin aut A model predictive vertical motion control of a passenger ship 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. Model predictive control Elsevier <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control Elsevier Irregular sea waves Elsevier Seasickness Elsevier Magnitude and rate saturated actuators Elsevier Vertical motion of ship Elsevier Cakici, Ferdi oth Yazici, Hakan oth Enthalten in Elsevier Science Chang, Guanru ELSEVIER Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy 2015 Amsterdam [u.a.] (DE-627)ELV01276728X volume:186 year:2019 day:15 month:08 pages:0 https://doi.org/10.1016/j.oceaneng.2019.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 186 2019 15 0815 0 |
allfieldsSound |
10.1016/j.oceaneng.2019.06.005 doi GBV00000000000761.pica (DE-627)ELV047575336 (ELSEVIER)S0029-8018(19)30302-6 DE-627 ger DE-627 rakwb eng 540 VZ 660 VZ 540 VZ BIODIV DE-30 fid 42.13 bkl Kucukdemiral, Ibrahim Beklan verfasserin aut A model predictive vertical motion control of a passenger ship 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. Model predictive control Elsevier <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control Elsevier Irregular sea waves Elsevier Seasickness Elsevier Magnitude and rate saturated actuators Elsevier Vertical motion of ship Elsevier Cakici, Ferdi oth Yazici, Hakan oth Enthalten in Elsevier Science Chang, Guanru ELSEVIER Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy 2015 Amsterdam [u.a.] (DE-627)ELV01276728X volume:186 year:2019 day:15 month:08 pages:0 https://doi.org/10.1016/j.oceaneng.2019.06.005 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA 42.13 Molekularbiologie VZ AR 186 2019 15 0815 0 |
language |
English |
source |
Enthalten in Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy Amsterdam [u.a.] volume:186 year:2019 day:15 month:08 pages:0 |
sourceStr |
Enthalten in Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy Amsterdam [u.a.] volume:186 year:2019 day:15 month:08 pages:0 |
format_phy_str_mv |
Article |
bklname |
Molekularbiologie |
institution |
findex.gbv.de |
topic_facet |
Model predictive control <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control Irregular sea waves Seasickness Magnitude and rate saturated actuators Vertical motion of ship |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy |
authorswithroles_txt_mv |
Kucukdemiral, Ibrahim Beklan @@aut@@ Cakici, Ferdi @@oth@@ Yazici, Hakan @@oth@@ |
publishDateDaySort_date |
2019-01-15T00:00:00Z |
hierarchy_top_id |
ELV01276728X |
dewey-sort |
3540 |
id |
ELV047575336 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047575336</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626015957.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191022s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.oceaneng.2019.06.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000761.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047575336</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-8018(19)30302-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kucukdemiral, Ibrahim Beklan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A model predictive vertical motion control of a passenger ship</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Model predictive control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Irregular sea waves</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Seasickness</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Magnitude and rate saturated actuators</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vertical motion of ship</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cakici, Ferdi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yazici, Hakan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Chang, Guanru ELSEVIER</subfield><subfield code="t">Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy</subfield><subfield code="d">2015</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV01276728X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:186</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:15</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.oceaneng.2019.06.005</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.13</subfield><subfield code="j">Molekularbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">186</subfield><subfield code="j">2019</subfield><subfield code="b">15</subfield><subfield code="c">0815</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Kucukdemiral, Ibrahim Beklan |
spellingShingle |
Kucukdemiral, Ibrahim Beklan ddc 540 ddc 660 fid BIODIV bkl 42.13 Elsevier Model predictive control Elsevier <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control Elsevier Irregular sea waves Elsevier Seasickness Elsevier Magnitude and rate saturated actuators Elsevier Vertical motion of ship A model predictive vertical motion control of a passenger ship |
authorStr |
Kucukdemiral, Ibrahim Beklan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV01276728X |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ 660 VZ BIODIV DE-30 fid 42.13 bkl A model predictive vertical motion control of a passenger ship Model predictive control Elsevier <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control Elsevier Irregular sea waves Elsevier Seasickness Elsevier Magnitude and rate saturated actuators Elsevier Vertical motion of ship Elsevier |
topic |
ddc 540 ddc 660 fid BIODIV bkl 42.13 Elsevier Model predictive control Elsevier <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control Elsevier Irregular sea waves Elsevier Seasickness Elsevier Magnitude and rate saturated actuators Elsevier Vertical motion of ship |
topic_unstemmed |
ddc 540 ddc 660 fid BIODIV bkl 42.13 Elsevier Model predictive control Elsevier <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control Elsevier Irregular sea waves Elsevier Seasickness Elsevier Magnitude and rate saturated actuators Elsevier Vertical motion of ship |
topic_browse |
ddc 540 ddc 660 fid BIODIV bkl 42.13 Elsevier Model predictive control Elsevier <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control Elsevier Irregular sea waves Elsevier Seasickness Elsevier Magnitude and rate saturated actuators Elsevier Vertical motion of ship |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
f c fc h y hy |
hierarchy_parent_title |
Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy |
hierarchy_parent_id |
ELV01276728X |
dewey-tens |
540 - Chemistry 660 - Chemical engineering |
hierarchy_top_title |
Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV01276728X |
title |
A model predictive vertical motion control of a passenger ship |
ctrlnum |
(DE-627)ELV047575336 (ELSEVIER)S0029-8018(19)30302-6 |
title_full |
A model predictive vertical motion control of a passenger ship |
author_sort |
Kucukdemiral, Ibrahim Beklan |
journal |
Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy |
journalStr |
Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Kucukdemiral, Ibrahim Beklan |
container_volume |
186 |
class |
540 VZ 660 VZ BIODIV DE-30 fid 42.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kucukdemiral, Ibrahim Beklan |
doi_str_mv |
10.1016/j.oceaneng.2019.06.005 |
dewey-full |
540 660 |
title_sort |
a model predictive vertical motion control of a passenger ship |
title_auth |
A model predictive vertical motion control of a passenger ship |
abstract |
In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. |
abstractGer |
In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. |
abstract_unstemmed |
In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA |
title_short |
A model predictive vertical motion control of a passenger ship |
url |
https://doi.org/10.1016/j.oceaneng.2019.06.005 |
remote_bool |
true |
author2 |
Cakici, Ferdi Yazici, Hakan |
author2Str |
Cakici, Ferdi Yazici, Hakan |
ppnlink |
ELV01276728X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.oceaneng.2019.06.005 |
up_date |
2024-07-06T16:32:31.338Z |
_version_ |
1803848045129891840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047575336</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626015957.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191022s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.oceaneng.2019.06.005</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000761.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047575336</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-8018(19)30302-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kucukdemiral, Ibrahim Beklan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A model predictive vertical motion control of a passenger ship</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, the design problem of a Model Predictive Controller (MPC) for attenuation of vertical motions of a passenger ship which is subject to irregular wave excitations is investigated. The proposed design considers actuator amplitude and rate saturation phenomenon. The motion control system of the ship utilises a pair of active stabilizing fins mounted to the head and tail. First, irregular long crested head waves are implemented by a well-established randomization theory in order to find heave force and pitch moment at F n = 0.40 and F n = 0.50 in the time domain. Then, a two-degree-of-freedom mathematical model, in which pitch and heave motions are coupled with the approximation of convolution integrals is solved to obtain the uncontrolled motions and accelerations of the ship. Finally, considering the physical amplitude and rate limitations of the active fin mechanism, an MPC design is proposed to obtain a practically applicable state-feedback control law for attenuating vertical motion of a passenger ship. The performance of the MPC is also compared with an elipsoid based H ∞ controller. An extensive amount of simulation studies are presented at the end to illustrate the effectiveness of the proposed approach.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Model predictive control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant="script">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∞</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Irregular sea waves</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Seasickness</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Magnitude and rate saturated actuators</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vertical motion of ship</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cakici, Ferdi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yazici, Hakan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Chang, Guanru ELSEVIER</subfield><subfield code="t">Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy</subfield><subfield code="d">2015</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV01276728X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:186</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:15</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.oceaneng.2019.06.005</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.13</subfield><subfield code="j">Molekularbiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">186</subfield><subfield code="j">2019</subfield><subfield code="b">15</subfield><subfield code="c">0815</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4010277 |