Role of Italian DTT in the power exhaust implementation strategy
The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic...
Ausführliche Beschreibung
Autor*in: |
Mazzitelli, G. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
5 |
---|
Übergeordnetes Werk: |
Enthalten in: CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current - Yang, Qi ELSEVIER, 2021, an international journal for fusion energy and technology devoted to experiments, theory, methods, and design, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:146 ; year:2019 ; pages:932-936 ; extent:5 |
Links: |
---|
DOI / URN: |
10.1016/j.fusengdes.2019.01.117 |
---|
Katalog-ID: |
ELV047637412 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV047637412 | ||
003 | DE-627 | ||
005 | 20230626020114.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191022s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.fusengdes.2019.01.117 |2 doi | |
028 | 5 | 2 | |a GBV00000000000726.pica |
035 | |a (DE-627)ELV047637412 | ||
035 | |a (ELSEVIER)S0920-3796(19)30124-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Mazzitelli, G. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Role of Italian DTT in the power exhaust implementation strategy |
264 | 1 | |c 2019transfer abstract | |
300 | |a 5 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. | ||
520 | |a The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. | ||
650 | 7 | |a Tokamak |2 Elsevier | |
650 | 7 | |a Device |2 Elsevier | |
650 | 7 | |a Fusion |2 Elsevier | |
700 | 1 | |a Albanese, R. |4 oth | |
700 | 1 | |a Crisanti, F. |4 oth | |
700 | 1 | |a Martin, P. |4 oth | |
700 | 1 | |a Pizzuto, A. |4 oth | |
700 | 1 | |a Tuccillo, A.A. |4 oth | |
700 | 1 | |a Ambrosino, R. |4 oth | |
700 | 1 | |a Appi, A. |4 oth | |
700 | 1 | |a Di Gironimo, G. |4 oth | |
700 | 1 | |a Di Zenobio, A. |4 oth | |
700 | 1 | |a Frattolillo, A. |4 oth | |
700 | 1 | |a Granucci, G. |4 oth | |
700 | 1 | |a Innocente, P. |4 oth | |
700 | 1 | |a Lampasi, A. |4 oth | |
700 | 1 | |a Martone, R. |4 oth | |
700 | 1 | |a Polli, G.M. |4 oth | |
700 | 1 | |a Ramogida, G. |4 oth | |
700 | 1 | |a Rossi, P. |4 oth | |
700 | 1 | |a Sandri, S. |4 oth | |
700 | 1 | |a Valisa, M. |4 oth | |
700 | 1 | |a Villari, R. |4 oth | |
700 | 1 | |a Vitale, V. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Yang, Qi ELSEVIER |t CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current |d 2021 |d an international journal for fusion energy and technology devoted to experiments, theory, methods, and design |g New York, NY [u.a.] |w (DE-627)ELV006449069 |
773 | 1 | 8 | |g volume:146 |g year:2019 |g pages:932-936 |g extent:5 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.fusengdes.2019.01.117 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
951 | |a AR | ||
952 | |d 146 |j 2019 |h 932-936 |g 5 |
author_variant |
g m gm |
---|---|
matchkey_str |
mazzitelligalbanesercrisantifmartinppizz:2019----:oeftladtnhpwrxasipe |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
50.92 |
publishDate |
2019 |
allfields |
10.1016/j.fusengdes.2019.01.117 doi GBV00000000000726.pica (DE-627)ELV047637412 (ELSEVIER)S0920-3796(19)30124-3 DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Mazzitelli, G. verfasserin aut Role of Italian DTT in the power exhaust implementation strategy 2019transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. Tokamak Elsevier Device Elsevier Fusion Elsevier Albanese, R. oth Crisanti, F. oth Martin, P. oth Pizzuto, A. oth Tuccillo, A.A. oth Ambrosino, R. oth Appi, A. oth Di Gironimo, G. oth Di Zenobio, A. oth Frattolillo, A. oth Granucci, G. oth Innocente, P. oth Lampasi, A. oth Martone, R. oth Polli, G.M. oth Ramogida, G. oth Rossi, P. oth Sandri, S. oth Valisa, M. oth Villari, R. oth Vitale, V. oth Enthalten in Elsevier Yang, Qi ELSEVIER CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current 2021 an international journal for fusion energy and technology devoted to experiments, theory, methods, and design New York, NY [u.a.] (DE-627)ELV006449069 volume:146 year:2019 pages:932-936 extent:5 https://doi.org/10.1016/j.fusengdes.2019.01.117 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 146 2019 932-936 5 |
spelling |
10.1016/j.fusengdes.2019.01.117 doi GBV00000000000726.pica (DE-627)ELV047637412 (ELSEVIER)S0920-3796(19)30124-3 DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Mazzitelli, G. verfasserin aut Role of Italian DTT in the power exhaust implementation strategy 2019transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. Tokamak Elsevier Device Elsevier Fusion Elsevier Albanese, R. oth Crisanti, F. oth Martin, P. oth Pizzuto, A. oth Tuccillo, A.A. oth Ambrosino, R. oth Appi, A. oth Di Gironimo, G. oth Di Zenobio, A. oth Frattolillo, A. oth Granucci, G. oth Innocente, P. oth Lampasi, A. oth Martone, R. oth Polli, G.M. oth Ramogida, G. oth Rossi, P. oth Sandri, S. oth Valisa, M. oth Villari, R. oth Vitale, V. oth Enthalten in Elsevier Yang, Qi ELSEVIER CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current 2021 an international journal for fusion energy and technology devoted to experiments, theory, methods, and design New York, NY [u.a.] (DE-627)ELV006449069 volume:146 year:2019 pages:932-936 extent:5 https://doi.org/10.1016/j.fusengdes.2019.01.117 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 146 2019 932-936 5 |
allfields_unstemmed |
10.1016/j.fusengdes.2019.01.117 doi GBV00000000000726.pica (DE-627)ELV047637412 (ELSEVIER)S0920-3796(19)30124-3 DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Mazzitelli, G. verfasserin aut Role of Italian DTT in the power exhaust implementation strategy 2019transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. Tokamak Elsevier Device Elsevier Fusion Elsevier Albanese, R. oth Crisanti, F. oth Martin, P. oth Pizzuto, A. oth Tuccillo, A.A. oth Ambrosino, R. oth Appi, A. oth Di Gironimo, G. oth Di Zenobio, A. oth Frattolillo, A. oth Granucci, G. oth Innocente, P. oth Lampasi, A. oth Martone, R. oth Polli, G.M. oth Ramogida, G. oth Rossi, P. oth Sandri, S. oth Valisa, M. oth Villari, R. oth Vitale, V. oth Enthalten in Elsevier Yang, Qi ELSEVIER CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current 2021 an international journal for fusion energy and technology devoted to experiments, theory, methods, and design New York, NY [u.a.] (DE-627)ELV006449069 volume:146 year:2019 pages:932-936 extent:5 https://doi.org/10.1016/j.fusengdes.2019.01.117 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 146 2019 932-936 5 |
allfieldsGer |
10.1016/j.fusengdes.2019.01.117 doi GBV00000000000726.pica (DE-627)ELV047637412 (ELSEVIER)S0920-3796(19)30124-3 DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Mazzitelli, G. verfasserin aut Role of Italian DTT in the power exhaust implementation strategy 2019transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. Tokamak Elsevier Device Elsevier Fusion Elsevier Albanese, R. oth Crisanti, F. oth Martin, P. oth Pizzuto, A. oth Tuccillo, A.A. oth Ambrosino, R. oth Appi, A. oth Di Gironimo, G. oth Di Zenobio, A. oth Frattolillo, A. oth Granucci, G. oth Innocente, P. oth Lampasi, A. oth Martone, R. oth Polli, G.M. oth Ramogida, G. oth Rossi, P. oth Sandri, S. oth Valisa, M. oth Villari, R. oth Vitale, V. oth Enthalten in Elsevier Yang, Qi ELSEVIER CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current 2021 an international journal for fusion energy and technology devoted to experiments, theory, methods, and design New York, NY [u.a.] (DE-627)ELV006449069 volume:146 year:2019 pages:932-936 extent:5 https://doi.org/10.1016/j.fusengdes.2019.01.117 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 146 2019 932-936 5 |
allfieldsSound |
10.1016/j.fusengdes.2019.01.117 doi GBV00000000000726.pica (DE-627)ELV047637412 (ELSEVIER)S0920-3796(19)30124-3 DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Mazzitelli, G. verfasserin aut Role of Italian DTT in the power exhaust implementation strategy 2019transfer abstract 5 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. Tokamak Elsevier Device Elsevier Fusion Elsevier Albanese, R. oth Crisanti, F. oth Martin, P. oth Pizzuto, A. oth Tuccillo, A.A. oth Ambrosino, R. oth Appi, A. oth Di Gironimo, G. oth Di Zenobio, A. oth Frattolillo, A. oth Granucci, G. oth Innocente, P. oth Lampasi, A. oth Martone, R. oth Polli, G.M. oth Ramogida, G. oth Rossi, P. oth Sandri, S. oth Valisa, M. oth Villari, R. oth Vitale, V. oth Enthalten in Elsevier Yang, Qi ELSEVIER CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current 2021 an international journal for fusion energy and technology devoted to experiments, theory, methods, and design New York, NY [u.a.] (DE-627)ELV006449069 volume:146 year:2019 pages:932-936 extent:5 https://doi.org/10.1016/j.fusengdes.2019.01.117 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 146 2019 932-936 5 |
language |
English |
source |
Enthalten in CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current New York, NY [u.a.] volume:146 year:2019 pages:932-936 extent:5 |
sourceStr |
Enthalten in CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current New York, NY [u.a.] volume:146 year:2019 pages:932-936 extent:5 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
Tokamak Device Fusion |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current |
authorswithroles_txt_mv |
Mazzitelli, G. @@aut@@ Albanese, R. @@oth@@ Crisanti, F. @@oth@@ Martin, P. @@oth@@ Pizzuto, A. @@oth@@ Tuccillo, A.A. @@oth@@ Ambrosino, R. @@oth@@ Appi, A. @@oth@@ Di Gironimo, G. @@oth@@ Di Zenobio, A. @@oth@@ Frattolillo, A. @@oth@@ Granucci, G. @@oth@@ Innocente, P. @@oth@@ Lampasi, A. @@oth@@ Martone, R. @@oth@@ Polli, G.M. @@oth@@ Ramogida, G. @@oth@@ Rossi, P. @@oth@@ Sandri, S. @@oth@@ Valisa, M. @@oth@@ Villari, R. @@oth@@ Vitale, V. @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV006449069 |
dewey-sort |
3690 |
id |
ELV047637412 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047637412</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626020114.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191022s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fusengdes.2019.01.117</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000726.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047637412</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0920-3796(19)30124-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mazzitelli, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Role of Italian DTT in the power exhaust implementation strategy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tokamak</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Device</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fusion</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albanese, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crisanti, F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martin, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pizzuto, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tuccillo, A.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ambrosino, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Appi, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Gironimo, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Zenobio, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frattolillo, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Granucci, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Innocente, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lampasi, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martone, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Polli, G.M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramogida, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rossi, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sandri, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valisa, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Villari, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vitale, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yang, Qi ELSEVIER</subfield><subfield code="t">CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current</subfield><subfield code="d">2021</subfield><subfield code="d">an international journal for fusion energy and technology devoted to experiments, theory, methods, and design</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV006449069</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:146</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:932-936</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fusengdes.2019.01.117</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">146</subfield><subfield code="j">2019</subfield><subfield code="h">932-936</subfield><subfield code="g">5</subfield></datafield></record></collection>
|
author |
Mazzitelli, G. |
spellingShingle |
Mazzitelli, G. ddc 690 bkl 50.92 Elsevier Tokamak Elsevier Device Elsevier Fusion Role of Italian DTT in the power exhaust implementation strategy |
authorStr |
Mazzitelli, G. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006449069 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 50.92 bkl Role of Italian DTT in the power exhaust implementation strategy Tokamak Elsevier Device Elsevier Fusion Elsevier |
topic |
ddc 690 bkl 50.92 Elsevier Tokamak Elsevier Device Elsevier Fusion |
topic_unstemmed |
ddc 690 bkl 50.92 Elsevier Tokamak Elsevier Device Elsevier Fusion |
topic_browse |
ddc 690 bkl 50.92 Elsevier Tokamak Elsevier Device Elsevier Fusion |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
r a ra f c fc p m pm a p ap a t at r a ra a a aa g g d gg ggd z a d za zad a f af g g gg p i pi a l al r m rm g p gp g r gr p r pr s s ss m v mv r v rv v v vv |
hierarchy_parent_title |
CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current |
hierarchy_parent_id |
ELV006449069 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006449069 |
title |
Role of Italian DTT in the power exhaust implementation strategy |
ctrlnum |
(DE-627)ELV047637412 (ELSEVIER)S0920-3796(19)30124-3 |
title_full |
Role of Italian DTT in the power exhaust implementation strategy |
author_sort |
Mazzitelli, G. |
journal |
CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current |
journalStr |
CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
932 |
author_browse |
Mazzitelli, G. |
container_volume |
146 |
physical |
5 |
class |
690 VZ 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Mazzitelli, G. |
doi_str_mv |
10.1016/j.fusengdes.2019.01.117 |
dewey-full |
690 |
title_sort |
role of italian dtt in the power exhaust implementation strategy |
title_auth |
Role of Italian DTT in the power exhaust implementation strategy |
abstract |
The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. |
abstractGer |
The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. |
abstract_unstemmed |
The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Role of Italian DTT in the power exhaust implementation strategy |
url |
https://doi.org/10.1016/j.fusengdes.2019.01.117 |
remote_bool |
true |
author2 |
Albanese, R. Crisanti, F. Martin, P. Pizzuto, A. Tuccillo, A.A. Ambrosino, R. Appi, A. Di Gironimo, G. Di Zenobio, A. Frattolillo, A. Granucci, G. Innocente, P. Lampasi, A. Martone, R. Polli, G.M. Ramogida, G. Rossi, P. Sandri, S. Valisa, M. Villari, R. Vitale, V. |
author2Str |
Albanese, R. Crisanti, F. Martin, P. Pizzuto, A. Tuccillo, A.A. Ambrosino, R. Appi, A. Di Gironimo, G. Di Zenobio, A. Frattolillo, A. Granucci, G. Innocente, P. Lampasi, A. Martone, R. Polli, G.M. Ramogida, G. Rossi, P. Sandri, S. Valisa, M. Villari, R. Vitale, V. |
ppnlink |
ELV006449069 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.fusengdes.2019.01.117 |
up_date |
2024-07-06T16:42:34.114Z |
_version_ |
1803848677185290240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047637412</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626020114.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191022s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fusengdes.2019.01.117</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000726.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047637412</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0920-3796(19)30124-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mazzitelli, G.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Role of Italian DTT in the power exhaust implementation strategy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">5</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The solution of the problem of heat exhaust has been pointed out as one of the main challenge towards the realization of magnetic confinement fusion. In the last years, two concepts have been proposed in alternative to the conventional divertor solution adopted for ITER: modification of the magnetic topology in the divertor region and liquid metal as plasma facing component. The role of the Divertor Tokamak Test facility (DTT) in the power exhaust implementation strategy is discussed. The evolution of the project, since the original proposal in 2015 to the present design, is shown. The DTT facility is well integrated in the European strategy and the final decision on the divertor configuration will be made, within 2022-23, on the basis of the indication of the Power Exhaust Group constituted by the EUROfusion Consortium. Finally, the main milestones and the timeline of the project are illustrated.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tokamak</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Device</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fusion</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albanese, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Crisanti, F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martin, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pizzuto, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tuccillo, A.A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ambrosino, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Appi, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Gironimo, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Zenobio, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frattolillo, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Granucci, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Innocente, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lampasi, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martone, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Polli, G.M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramogida, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rossi, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sandri, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valisa, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Villari, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vitale, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Yang, Qi ELSEVIER</subfield><subfield code="t">CFD modelling of local scour around Tri-USAF in sand with different arrangements under steady current</subfield><subfield code="d">2021</subfield><subfield code="d">an international journal for fusion energy and technology devoted to experiments, theory, methods, and design</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV006449069</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:146</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:932-936</subfield><subfield code="g">extent:5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fusengdes.2019.01.117</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">146</subfield><subfield code="j">2019</subfield><subfield code="h">932-936</subfield><subfield code="g">5</subfield></datafield></record></collection>
|
score |
7.4027786 |