The Jülich high brilliance neutron source project – Improving access to neutrons
With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities wo...
Ausführliche Beschreibung
Autor*in: |
Gutberlet, T. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
4 |
---|
Übergeordnetes Werk: |
Enthalten in: Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques - Bredács, M. ELSEVIER, 2023, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:570 ; year:2019 ; day:1 ; month:10 ; pages:345-348 ; extent:4 |
Links: |
---|
DOI / URN: |
10.1016/j.physb.2018.01.019 |
---|
Katalog-ID: |
ELV047670878 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV047670878 | ||
003 | DE-627 | ||
005 | 20230626020145.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191022s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.physb.2018.01.019 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001320.pica |
035 | |a (DE-627)ELV047670878 | ||
035 | |a (ELSEVIER)S0921-4526(18)30028-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
084 | |a 51.30 |2 bkl | ||
100 | 1 | |a Gutberlet, T. |e verfasserin |4 aut | |
245 | 1 | 4 | |a The Jülich high brilliance neutron source project – Improving access to neutrons |
264 | 1 | |c 2019transfer abstract | |
300 | |a 4 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. | ||
520 | |a With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. | ||
650 | 7 | |a Neutron optics |2 Elsevier | |
650 | 7 | |a Neutron instruments |2 Elsevier | |
650 | 7 | |a Neutron moderation |2 Elsevier | |
650 | 7 | |a Neutron sources |2 Elsevier | |
650 | 7 | |a Neutron target |2 Elsevier | |
650 | 7 | |a Nuclear reaction |2 Elsevier | |
700 | 1 | |a Rücker, U. |4 oth | |
700 | 1 | |a Zakalek, P. |4 oth | |
700 | 1 | |a Cronert, T. |4 oth | |
700 | 1 | |a Voigt, J. |4 oth | |
700 | 1 | |a Baggemann, J. |4 oth | |
700 | 1 | |a Doege, P.-E. |4 oth | |
700 | 1 | |a Mauerhofer, E. |4 oth | |
700 | 1 | |a Böhm, S. |4 oth | |
700 | 1 | |a Dabruck, J.P. |4 oth | |
700 | 1 | |a Nabbi, R. |4 oth | |
700 | 1 | |a Butzek, M. |4 oth | |
700 | 1 | |a Klaus, M. |4 oth | |
700 | 1 | |a Lange, C. |4 oth | |
700 | 1 | |a Brückel, T. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Bredács, M. ELSEVIER |t Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques |d 2023 |g Amsterdam |w (DE-627)ELV010517057 |
773 | 1 | 8 | |g volume:570 |g year:2019 |g day:1 |g month:10 |g pages:345-348 |g extent:4 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.physb.2018.01.019 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_203 | ||
912 | |a GBV_ILN_227 | ||
912 | |a GBV_ILN_2010 | ||
936 | b | k | |a 51.30 |j Werkstoffprüfung |j Werkstoffuntersuchung |q VZ |
951 | |a AR | ||
952 | |d 570 |j 2019 |b 1 |c 1001 |h 345-348 |g 4 |
author_variant |
t g tg |
---|---|
matchkey_str |
gutberlettrckeruzakalekpcronerttvoigtjba:2019----:hjihihrlineetosucpoetmrv |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
51.30 |
publishDate |
2019 |
allfields |
10.1016/j.physb.2018.01.019 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001320.pica (DE-627)ELV047670878 (ELSEVIER)S0921-4526(18)30028-0 DE-627 ger DE-627 rakwb eng 540 VZ 51.30 bkl Gutberlet, T. verfasserin aut The Jülich high brilliance neutron source project – Improving access to neutrons 2019transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. Neutron optics Elsevier Neutron instruments Elsevier Neutron moderation Elsevier Neutron sources Elsevier Neutron target Elsevier Nuclear reaction Elsevier Rücker, U. oth Zakalek, P. oth Cronert, T. oth Voigt, J. oth Baggemann, J. oth Doege, P.-E. oth Mauerhofer, E. oth Böhm, S. oth Dabruck, J.P. oth Nabbi, R. oth Butzek, M. oth Klaus, M. oth Lange, C. oth Brückel, T. oth Enthalten in Elsevier Bredács, M. ELSEVIER Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques 2023 Amsterdam (DE-627)ELV010517057 volume:570 year:2019 day:1 month:10 pages:345-348 extent:4 https://doi.org/10.1016/j.physb.2018.01.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_203 GBV_ILN_227 GBV_ILN_2010 51.30 Werkstoffprüfung Werkstoffuntersuchung VZ AR 570 2019 1 1001 345-348 4 |
spelling |
10.1016/j.physb.2018.01.019 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001320.pica (DE-627)ELV047670878 (ELSEVIER)S0921-4526(18)30028-0 DE-627 ger DE-627 rakwb eng 540 VZ 51.30 bkl Gutberlet, T. verfasserin aut The Jülich high brilliance neutron source project – Improving access to neutrons 2019transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. Neutron optics Elsevier Neutron instruments Elsevier Neutron moderation Elsevier Neutron sources Elsevier Neutron target Elsevier Nuclear reaction Elsevier Rücker, U. oth Zakalek, P. oth Cronert, T. oth Voigt, J. oth Baggemann, J. oth Doege, P.-E. oth Mauerhofer, E. oth Böhm, S. oth Dabruck, J.P. oth Nabbi, R. oth Butzek, M. oth Klaus, M. oth Lange, C. oth Brückel, T. oth Enthalten in Elsevier Bredács, M. ELSEVIER Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques 2023 Amsterdam (DE-627)ELV010517057 volume:570 year:2019 day:1 month:10 pages:345-348 extent:4 https://doi.org/10.1016/j.physb.2018.01.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_203 GBV_ILN_227 GBV_ILN_2010 51.30 Werkstoffprüfung Werkstoffuntersuchung VZ AR 570 2019 1 1001 345-348 4 |
allfields_unstemmed |
10.1016/j.physb.2018.01.019 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001320.pica (DE-627)ELV047670878 (ELSEVIER)S0921-4526(18)30028-0 DE-627 ger DE-627 rakwb eng 540 VZ 51.30 bkl Gutberlet, T. verfasserin aut The Jülich high brilliance neutron source project – Improving access to neutrons 2019transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. Neutron optics Elsevier Neutron instruments Elsevier Neutron moderation Elsevier Neutron sources Elsevier Neutron target Elsevier Nuclear reaction Elsevier Rücker, U. oth Zakalek, P. oth Cronert, T. oth Voigt, J. oth Baggemann, J. oth Doege, P.-E. oth Mauerhofer, E. oth Böhm, S. oth Dabruck, J.P. oth Nabbi, R. oth Butzek, M. oth Klaus, M. oth Lange, C. oth Brückel, T. oth Enthalten in Elsevier Bredács, M. ELSEVIER Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques 2023 Amsterdam (DE-627)ELV010517057 volume:570 year:2019 day:1 month:10 pages:345-348 extent:4 https://doi.org/10.1016/j.physb.2018.01.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_203 GBV_ILN_227 GBV_ILN_2010 51.30 Werkstoffprüfung Werkstoffuntersuchung VZ AR 570 2019 1 1001 345-348 4 |
allfieldsGer |
10.1016/j.physb.2018.01.019 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001320.pica (DE-627)ELV047670878 (ELSEVIER)S0921-4526(18)30028-0 DE-627 ger DE-627 rakwb eng 540 VZ 51.30 bkl Gutberlet, T. verfasserin aut The Jülich high brilliance neutron source project – Improving access to neutrons 2019transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. Neutron optics Elsevier Neutron instruments Elsevier Neutron moderation Elsevier Neutron sources Elsevier Neutron target Elsevier Nuclear reaction Elsevier Rücker, U. oth Zakalek, P. oth Cronert, T. oth Voigt, J. oth Baggemann, J. oth Doege, P.-E. oth Mauerhofer, E. oth Böhm, S. oth Dabruck, J.P. oth Nabbi, R. oth Butzek, M. oth Klaus, M. oth Lange, C. oth Brückel, T. oth Enthalten in Elsevier Bredács, M. ELSEVIER Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques 2023 Amsterdam (DE-627)ELV010517057 volume:570 year:2019 day:1 month:10 pages:345-348 extent:4 https://doi.org/10.1016/j.physb.2018.01.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_203 GBV_ILN_227 GBV_ILN_2010 51.30 Werkstoffprüfung Werkstoffuntersuchung VZ AR 570 2019 1 1001 345-348 4 |
allfieldsSound |
10.1016/j.physb.2018.01.019 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001320.pica (DE-627)ELV047670878 (ELSEVIER)S0921-4526(18)30028-0 DE-627 ger DE-627 rakwb eng 540 VZ 51.30 bkl Gutberlet, T. verfasserin aut The Jülich high brilliance neutron source project – Improving access to neutrons 2019transfer abstract 4 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. Neutron optics Elsevier Neutron instruments Elsevier Neutron moderation Elsevier Neutron sources Elsevier Neutron target Elsevier Nuclear reaction Elsevier Rücker, U. oth Zakalek, P. oth Cronert, T. oth Voigt, J. oth Baggemann, J. oth Doege, P.-E. oth Mauerhofer, E. oth Böhm, S. oth Dabruck, J.P. oth Nabbi, R. oth Butzek, M. oth Klaus, M. oth Lange, C. oth Brückel, T. oth Enthalten in Elsevier Bredács, M. ELSEVIER Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques 2023 Amsterdam (DE-627)ELV010517057 volume:570 year:2019 day:1 month:10 pages:345-348 extent:4 https://doi.org/10.1016/j.physb.2018.01.019 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_203 GBV_ILN_227 GBV_ILN_2010 51.30 Werkstoffprüfung Werkstoffuntersuchung VZ AR 570 2019 1 1001 345-348 4 |
language |
English |
source |
Enthalten in Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques Amsterdam volume:570 year:2019 day:1 month:10 pages:345-348 extent:4 |
sourceStr |
Enthalten in Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques Amsterdam volume:570 year:2019 day:1 month:10 pages:345-348 extent:4 |
format_phy_str_mv |
Article |
bklname |
Werkstoffprüfung Werkstoffuntersuchung |
institution |
findex.gbv.de |
topic_facet |
Neutron optics Neutron instruments Neutron moderation Neutron sources Neutron target Nuclear reaction |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques |
authorswithroles_txt_mv |
Gutberlet, T. @@aut@@ Rücker, U. @@oth@@ Zakalek, P. @@oth@@ Cronert, T. @@oth@@ Voigt, J. @@oth@@ Baggemann, J. @@oth@@ Doege, P.-E. @@oth@@ Mauerhofer, E. @@oth@@ Böhm, S. @@oth@@ Dabruck, J.P. @@oth@@ Nabbi, R. @@oth@@ Butzek, M. @@oth@@ Klaus, M. @@oth@@ Lange, C. @@oth@@ Brückel, T. @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV010517057 |
dewey-sort |
3540 |
id |
ELV047670878 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047670878</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626020145.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191022s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physb.2018.01.019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001320.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047670878</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-4526(18)30028-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gutberlet, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Jülich high brilliance neutron source project – Improving access to neutrons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neutron optics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neutron instruments</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neutron moderation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neutron sources</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neutron target</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nuclear reaction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rücker, U.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zakalek, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cronert, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Voigt, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baggemann, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Doege, P.-E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mauerhofer, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Böhm, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dabruck, J.P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nabbi, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Butzek, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klaus, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lange, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brückel, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Bredács, M. ELSEVIER</subfield><subfield code="t">Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV010517057</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:570</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:345-348</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.physb.2018.01.019</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_203</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.30</subfield><subfield code="j">Werkstoffprüfung</subfield><subfield code="j">Werkstoffuntersuchung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">570</subfield><subfield code="j">2019</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">345-348</subfield><subfield code="g">4</subfield></datafield></record></collection>
|
author |
Gutberlet, T. |
spellingShingle |
Gutberlet, T. ddc 540 bkl 51.30 Elsevier Neutron optics Elsevier Neutron instruments Elsevier Neutron moderation Elsevier Neutron sources Elsevier Neutron target Elsevier Nuclear reaction The Jülich high brilliance neutron source project – Improving access to neutrons |
authorStr |
Gutberlet, T. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV010517057 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ 51.30 bkl The Jülich high brilliance neutron source project – Improving access to neutrons Neutron optics Elsevier Neutron instruments Elsevier Neutron moderation Elsevier Neutron sources Elsevier Neutron target Elsevier Nuclear reaction Elsevier |
topic |
ddc 540 bkl 51.30 Elsevier Neutron optics Elsevier Neutron instruments Elsevier Neutron moderation Elsevier Neutron sources Elsevier Neutron target Elsevier Nuclear reaction |
topic_unstemmed |
ddc 540 bkl 51.30 Elsevier Neutron optics Elsevier Neutron instruments Elsevier Neutron moderation Elsevier Neutron sources Elsevier Neutron target Elsevier Nuclear reaction |
topic_browse |
ddc 540 bkl 51.30 Elsevier Neutron optics Elsevier Neutron instruments Elsevier Neutron moderation Elsevier Neutron sources Elsevier Neutron target Elsevier Nuclear reaction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
u r ur p z pz t c tc j v jv j b jb p e d ped e m em s b sb j d jd r n rn m b mb m k mk c l cl t b tb |
hierarchy_parent_title |
Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques |
hierarchy_parent_id |
ELV010517057 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV010517057 |
title |
The Jülich high brilliance neutron source project – Improving access to neutrons |
ctrlnum |
(DE-627)ELV047670878 (ELSEVIER)S0921-4526(18)30028-0 |
title_full |
The Jülich high brilliance neutron source project – Improving access to neutrons |
author_sort |
Gutberlet, T. |
journal |
Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques |
journalStr |
Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
345 |
author_browse |
Gutberlet, T. |
container_volume |
570 |
physical |
4 |
class |
540 VZ 51.30 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gutberlet, T. |
doi_str_mv |
10.1016/j.physb.2018.01.019 |
dewey-full |
540 |
title_sort |
jülich high brilliance neutron source project – improving access to neutrons |
title_auth |
The Jülich high brilliance neutron source project – Improving access to neutrons |
abstract |
With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. |
abstractGer |
With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. |
abstract_unstemmed |
With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_203 GBV_ILN_227 GBV_ILN_2010 |
title_short |
The Jülich high brilliance neutron source project – Improving access to neutrons |
url |
https://doi.org/10.1016/j.physb.2018.01.019 |
remote_bool |
true |
author2 |
Rücker, U. Zakalek, P. Cronert, T. Voigt, J. Baggemann, J. Doege, P.-E. Mauerhofer, E. Böhm, S. Dabruck, J.P. Nabbi, R. Butzek, M. Klaus, M. Lange, C. Brückel, T. |
author2Str |
Rücker, U. Zakalek, P. Cronert, T. Voigt, J. Baggemann, J. Doege, P.-E. Mauerhofer, E. Böhm, S. Dabruck, J.P. Nabbi, R. Butzek, M. Klaus, M. Lange, C. Brückel, T. |
ppnlink |
ELV010517057 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.physb.2018.01.019 |
up_date |
2024-07-06T16:47:05.486Z |
_version_ |
1803848961742602240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047670878</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626020145.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191022s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physb.2018.01.019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001320.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047670878</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-4526(18)30028-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gutberlet, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Jülich high brilliance neutron source project – Improving access to neutrons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">4</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the construction of the ESS, the European neutron user community is eagerly awaiting the commissioning of the brightest neutron source worldwide in 2021. Parallel to this, there is however the ongoing development of neutron science being undertaken at a dwindling number of neutron facilities worldwide. The Jülich Centre for Neutron Science has started a project to develop and design compact accelerator-driven high brilliance neutron sources as an efficient and cost effective alternative to the current low- and medium-flux reactor and spallation sources with the potential to offer science and industry access to neutrons. The project aims to deliver a high brilliance neutron source (HBS), consisting of a compact neutron production and moderator system which provides thermal and cold neutrons with high brilliance efficiently extracted in an optimized neutron transport system. By shaping the experiment holistically from the source to the detector, neutron experiments could be set-up for specific scientific requirements in a flexible and efficient way for the neutron user.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neutron optics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neutron instruments</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neutron moderation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neutron sources</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neutron target</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nuclear reaction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rücker, U.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zakalek, P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cronert, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Voigt, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baggemann, J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Doege, P.-E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mauerhofer, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Böhm, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dabruck, J.P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nabbi, R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Butzek, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klaus, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lange, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brückel, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Bredács, M. ELSEVIER</subfield><subfield code="t">Towards circular plastics: Density and MFR prediction of PE with IR spectroscopic techniques</subfield><subfield code="d">2023</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV010517057</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:570</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:345-348</subfield><subfield code="g">extent:4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.physb.2018.01.019</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_203</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.30</subfield><subfield code="j">Werkstoffprüfung</subfield><subfield code="j">Werkstoffuntersuchung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">570</subfield><subfield code="j">2019</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">345-348</subfield><subfield code="g">4</subfield></datafield></record></collection>
|
score |
7.401121 |