Rotations of convex harmonic univalent mappings
Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conject...
Ausführliche Beschreibung
Autor*in: |
Kayumov, Ilgiz R. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
9 |
---|
Übergeordnetes Werk: |
Enthalten in: Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions - Lemański, K. ELSEVIER, 2015, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:155 ; year:2019 ; pages:1-9 ; extent:9 |
Links: |
---|
DOI / URN: |
10.1016/j.bulsci.2019.01.007 |
---|
Katalog-ID: |
ELV047855347 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV047855347 | ||
003 | DE-627 | ||
005 | 20230626020632.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.bulsci.2019.01.007 |2 doi | |
028 | 5 | 2 | |a GBV00000000000743.pica |
035 | |a (DE-627)ELV047855347 | ||
035 | |a (ELSEVIER)S0007-4497(19)30007-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
082 | 0 | 4 | |a 670 |q VZ |
084 | |a 51.60 |2 bkl | ||
084 | |a 58.45 |2 bkl | ||
100 | 1 | |a Kayumov, Ilgiz R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rotations of convex harmonic univalent mappings |
264 | 1 | |c 2019transfer abstract | |
300 | |a 9 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. | ||
520 | |a Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. | ||
650 | 7 | |a Harmonic |2 Elsevier | |
650 | 7 | |a Harmonic automorphism |2 Elsevier | |
650 | 7 | |a Convex in one direction |2 Elsevier | |
650 | 7 | |a Convex and starlike functions |2 Elsevier | |
650 | 7 | |a Univalent |2 Elsevier | |
700 | 1 | |a Ponnusamy, Saminathan |4 oth | |
700 | 1 | |a Xuan, Le Anh |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Lemański, K. ELSEVIER |t Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions |d 2015 |g Amsterdam [u.a.] |w (DE-627)ELV018942970 |
773 | 1 | 8 | |g volume:155 |g year:2019 |g pages:1-9 |g extent:9 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.bulsci.2019.01.007 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_40 | ||
936 | b | k | |a 51.60 |j Keramische Werkstoffe |j Hartstoffe |x Werkstoffkunde |q VZ |
936 | b | k | |a 58.45 |j Gesteinshüttenkunde |q VZ |
951 | |a AR | ||
952 | |d 155 |j 2019 |h 1-9 |g 9 |
author_variant |
i r k ir irk |
---|---|
matchkey_str |
kayumovilgizrponnusamysaminathanxuanlean:2019----:oainocnehroiuia |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
51.60 58.45 |
publishDate |
2019 |
allfields |
10.1016/j.bulsci.2019.01.007 doi GBV00000000000743.pica (DE-627)ELV047855347 (ELSEVIER)S0007-4497(19)30007-7 DE-627 ger DE-627 rakwb eng 530 VZ 670 VZ 51.60 bkl 58.45 bkl Kayumov, Ilgiz R. verfasserin aut Rotations of convex harmonic univalent mappings 2019transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. Harmonic Elsevier Harmonic automorphism Elsevier Convex in one direction Elsevier Convex and starlike functions Elsevier Univalent Elsevier Ponnusamy, Saminathan oth Xuan, Le Anh oth Enthalten in Elsevier Lemański, K. ELSEVIER Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions 2015 Amsterdam [u.a.] (DE-627)ELV018942970 volume:155 year:2019 pages:1-9 extent:9 https://doi.org/10.1016/j.bulsci.2019.01.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 155 2019 1-9 9 |
spelling |
10.1016/j.bulsci.2019.01.007 doi GBV00000000000743.pica (DE-627)ELV047855347 (ELSEVIER)S0007-4497(19)30007-7 DE-627 ger DE-627 rakwb eng 530 VZ 670 VZ 51.60 bkl 58.45 bkl Kayumov, Ilgiz R. verfasserin aut Rotations of convex harmonic univalent mappings 2019transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. Harmonic Elsevier Harmonic automorphism Elsevier Convex in one direction Elsevier Convex and starlike functions Elsevier Univalent Elsevier Ponnusamy, Saminathan oth Xuan, Le Anh oth Enthalten in Elsevier Lemański, K. ELSEVIER Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions 2015 Amsterdam [u.a.] (DE-627)ELV018942970 volume:155 year:2019 pages:1-9 extent:9 https://doi.org/10.1016/j.bulsci.2019.01.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 155 2019 1-9 9 |
allfields_unstemmed |
10.1016/j.bulsci.2019.01.007 doi GBV00000000000743.pica (DE-627)ELV047855347 (ELSEVIER)S0007-4497(19)30007-7 DE-627 ger DE-627 rakwb eng 530 VZ 670 VZ 51.60 bkl 58.45 bkl Kayumov, Ilgiz R. verfasserin aut Rotations of convex harmonic univalent mappings 2019transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. Harmonic Elsevier Harmonic automorphism Elsevier Convex in one direction Elsevier Convex and starlike functions Elsevier Univalent Elsevier Ponnusamy, Saminathan oth Xuan, Le Anh oth Enthalten in Elsevier Lemański, K. ELSEVIER Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions 2015 Amsterdam [u.a.] (DE-627)ELV018942970 volume:155 year:2019 pages:1-9 extent:9 https://doi.org/10.1016/j.bulsci.2019.01.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 155 2019 1-9 9 |
allfieldsGer |
10.1016/j.bulsci.2019.01.007 doi GBV00000000000743.pica (DE-627)ELV047855347 (ELSEVIER)S0007-4497(19)30007-7 DE-627 ger DE-627 rakwb eng 530 VZ 670 VZ 51.60 bkl 58.45 bkl Kayumov, Ilgiz R. verfasserin aut Rotations of convex harmonic univalent mappings 2019transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. Harmonic Elsevier Harmonic automorphism Elsevier Convex in one direction Elsevier Convex and starlike functions Elsevier Univalent Elsevier Ponnusamy, Saminathan oth Xuan, Le Anh oth Enthalten in Elsevier Lemański, K. ELSEVIER Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions 2015 Amsterdam [u.a.] (DE-627)ELV018942970 volume:155 year:2019 pages:1-9 extent:9 https://doi.org/10.1016/j.bulsci.2019.01.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 155 2019 1-9 9 |
allfieldsSound |
10.1016/j.bulsci.2019.01.007 doi GBV00000000000743.pica (DE-627)ELV047855347 (ELSEVIER)S0007-4497(19)30007-7 DE-627 ger DE-627 rakwb eng 530 VZ 670 VZ 51.60 bkl 58.45 bkl Kayumov, Ilgiz R. verfasserin aut Rotations of convex harmonic univalent mappings 2019transfer abstract 9 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. Harmonic Elsevier Harmonic automorphism Elsevier Convex in one direction Elsevier Convex and starlike functions Elsevier Univalent Elsevier Ponnusamy, Saminathan oth Xuan, Le Anh oth Enthalten in Elsevier Lemański, K. ELSEVIER Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions 2015 Amsterdam [u.a.] (DE-627)ELV018942970 volume:155 year:2019 pages:1-9 extent:9 https://doi.org/10.1016/j.bulsci.2019.01.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.60 Keramische Werkstoffe Hartstoffe Werkstoffkunde VZ 58.45 Gesteinshüttenkunde VZ AR 155 2019 1-9 9 |
language |
English |
source |
Enthalten in Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions Amsterdam [u.a.] volume:155 year:2019 pages:1-9 extent:9 |
sourceStr |
Enthalten in Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions Amsterdam [u.a.] volume:155 year:2019 pages:1-9 extent:9 |
format_phy_str_mv |
Article |
bklname |
Keramische Werkstoffe Hartstoffe Gesteinshüttenkunde |
institution |
findex.gbv.de |
topic_facet |
Harmonic Harmonic automorphism Convex in one direction Convex and starlike functions Univalent |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions |
authorswithroles_txt_mv |
Kayumov, Ilgiz R. @@aut@@ Ponnusamy, Saminathan @@oth@@ Xuan, Le Anh @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV018942970 |
dewey-sort |
3530 |
id |
ELV047855347 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047855347</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626020632.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.bulsci.2019.01.007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000743.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047855347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0007-4497(19)30007-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kayumov, Ilgiz R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rotations of convex harmonic univalent mappings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic automorphism</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convex in one direction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convex and starlike functions</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Univalent</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ponnusamy, Saminathan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xuan, Le Anh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Lemański, K. ELSEVIER</subfield><subfield code="t">Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions</subfield><subfield code="d">2015</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV018942970</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:155</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:1-9</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.bulsci.2019.01.007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.60</subfield><subfield code="j">Keramische Werkstoffe</subfield><subfield code="j">Hartstoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">155</subfield><subfield code="j">2019</subfield><subfield code="h">1-9</subfield><subfield code="g">9</subfield></datafield></record></collection>
|
author |
Kayumov, Ilgiz R. |
spellingShingle |
Kayumov, Ilgiz R. ddc 530 ddc 670 bkl 51.60 bkl 58.45 Elsevier Harmonic Elsevier Harmonic automorphism Elsevier Convex in one direction Elsevier Convex and starlike functions Elsevier Univalent Rotations of convex harmonic univalent mappings |
authorStr |
Kayumov, Ilgiz R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV018942970 |
format |
electronic Article |
dewey-ones |
530 - Physics 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 VZ 670 VZ 51.60 bkl 58.45 bkl Rotations of convex harmonic univalent mappings Harmonic Elsevier Harmonic automorphism Elsevier Convex in one direction Elsevier Convex and starlike functions Elsevier Univalent Elsevier |
topic |
ddc 530 ddc 670 bkl 51.60 bkl 58.45 Elsevier Harmonic Elsevier Harmonic automorphism Elsevier Convex in one direction Elsevier Convex and starlike functions Elsevier Univalent |
topic_unstemmed |
ddc 530 ddc 670 bkl 51.60 bkl 58.45 Elsevier Harmonic Elsevier Harmonic automorphism Elsevier Convex in one direction Elsevier Convex and starlike functions Elsevier Univalent |
topic_browse |
ddc 530 ddc 670 bkl 51.60 bkl 58.45 Elsevier Harmonic Elsevier Harmonic automorphism Elsevier Convex in one direction Elsevier Convex and starlike functions Elsevier Univalent |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s p sp l a x la lax |
hierarchy_parent_title |
Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions |
hierarchy_parent_id |
ELV018942970 |
dewey-tens |
530 - Physics 670 - Manufacturing |
hierarchy_top_title |
Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV018942970 |
title |
Rotations of convex harmonic univalent mappings |
ctrlnum |
(DE-627)ELV047855347 (ELSEVIER)S0007-4497(19)30007-7 |
title_full |
Rotations of convex harmonic univalent mappings |
author_sort |
Kayumov, Ilgiz R. |
journal |
Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions |
journalStr |
Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
1 |
author_browse |
Kayumov, Ilgiz R. |
container_volume |
155 |
physical |
9 |
class |
530 VZ 670 VZ 51.60 bkl 58.45 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kayumov, Ilgiz R. |
doi_str_mv |
10.1016/j.bulsci.2019.01.007 |
dewey-full |
530 670 |
title_sort |
rotations of convex harmonic univalent mappings |
title_auth |
Rotations of convex harmonic univalent mappings |
abstract |
Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. |
abstractGer |
Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. |
abstract_unstemmed |
Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 |
title_short |
Rotations of convex harmonic univalent mappings |
url |
https://doi.org/10.1016/j.bulsci.2019.01.007 |
remote_bool |
true |
author2 |
Ponnusamy, Saminathan Xuan, Le Anh |
author2Str |
Ponnusamy, Saminathan Xuan, Le Anh |
ppnlink |
ELV018942970 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.bulsci.2019.01.007 |
up_date |
2024-07-06T17:17:58.881Z |
_version_ |
1803850905166020608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047855347</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626020632.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.bulsci.2019.01.007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000743.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047855347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0007-4497(19)30007-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kayumov, Ilgiz R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rotations of convex harmonic univalent mappings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">9</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Let f = h + g ‾ be a normalized and sense-preserving convex harmonic mapping in the unit disk D . In a recent paper, Ponnusamy and Sairam Kaliraj conjectured that there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is convex in D . In this article, we first disprove a more flexible conjecture: “Let f = h + g ‾ be a convex harmonic mapping in the disk D . Then there is a θ ∈ [ 0 , 2 π ) such that the function h + e i θ g is starlike in D ”. In addition, we present an example to show that there exists a harmonic automorphism f = h + g ‾ of a disk such that the function h + e i θ g is convex in only one direction for θ ≠ 0 , and that the analytic function h + g is not starlike therein. The article concludes with a new conjecture.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic automorphism</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convex in one direction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convex and starlike functions</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Univalent</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ponnusamy, Saminathan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xuan, Le Anh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Lemański, K. ELSEVIER</subfield><subfield code="t">Spectroscopic properties of LaZnPO polycrystals doped with Nd3+ ions</subfield><subfield code="d">2015</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV018942970</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:155</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:1-9</subfield><subfield code="g">extent:9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.bulsci.2019.01.007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.60</subfield><subfield code="j">Keramische Werkstoffe</subfield><subfield code="j">Hartstoffe</subfield><subfield code="x">Werkstoffkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">155</subfield><subfield code="j">2019</subfield><subfield code="h">1-9</subfield><subfield code="g">9</subfield></datafield></record></collection>
|
score |
7.4011774 |