Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery
A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int ,...
Ausführliche Beschreibung
Autor*in: |
Li, Huanhuan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
Electrochemical-thermal coupled |
---|
Übergeordnetes Werk: |
Enthalten in: Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method - Xiao, Hong ELSEVIER, 2013, the international journal on the science and technology of electrochemical energy systems, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:438 ; year:2019 ; day:31 ; month:10 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jpowsour.2019.226974 |
---|
Katalog-ID: |
ELV047933593 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV047933593 | ||
003 | DE-627 | ||
005 | 20230626020822.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jpowsour.2019.226974 |2 doi | |
028 | 5 | 2 | |a GBV00000000000758.pica |
035 | |a (DE-627)ELV047933593 | ||
035 | |a (ELSEVIER)S0378-7753(19)30967-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Li, Huanhuan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery |
264 | 1 | |c 2019transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. | ||
520 | |a A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. | ||
650 | 7 | |a Lithium-ion battery |2 Elsevier | |
650 | 7 | |a Multiphysics coupled |2 Elsevier | |
650 | 7 | |a Electrochemical-thermal coupled |2 Elsevier | |
650 | 7 | |a Thermal characteristic analysis |2 Elsevier | |
650 | 7 | |a Parameter optimization |2 Elsevier | |
700 | 1 | |a Liu, Chengyang |4 oth | |
700 | 1 | |a Saini, Ashwani |4 oth | |
700 | 1 | |a Wang, Yaping |4 oth | |
700 | 1 | |a Jiang, Haobin |4 oth | |
700 | 1 | |a Yang, Tao |4 oth | |
700 | 1 | |a Chen, Long |4 oth | |
700 | 1 | |a Pan, Chaofeng |4 oth | |
700 | 1 | |a Shen, Huaping |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Xiao, Hong ELSEVIER |t Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |d 2013 |d the international journal on the science and technology of electrochemical energy systems |g New York, NY [u.a.] |w (DE-627)ELV00098745X |
773 | 1 | 8 | |g volume:438 |g year:2019 |g day:31 |g month:10 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jpowsour.2019.226974 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
951 | |a AR | ||
952 | |d 438 |j 2019 |b 31 |c 1031 |h 0 |
author_variant |
h l hl |
---|---|
matchkey_str |
lihuanhuanliuchengyangsainiashwaniwangya:2019----:opigutpyisiuainnrsossraeehdlgfrhtemlpiiainf |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
50.92 |
publishDate |
2019 |
allfields |
10.1016/j.jpowsour.2019.226974 doi GBV00000000000758.pica (DE-627)ELV047933593 (ELSEVIER)S0378-7753(19)30967-X DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Li, Huanhuan verfasserin aut Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. Lithium-ion battery Elsevier Multiphysics coupled Elsevier Electrochemical-thermal coupled Elsevier Thermal characteristic analysis Elsevier Parameter optimization Elsevier Liu, Chengyang oth Saini, Ashwani oth Wang, Yaping oth Jiang, Haobin oth Yang, Tao oth Chen, Long oth Pan, Chaofeng oth Shen, Huaping oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:438 year:2019 day:31 month:10 pages:0 https://doi.org/10.1016/j.jpowsour.2019.226974 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 438 2019 31 1031 0 |
spelling |
10.1016/j.jpowsour.2019.226974 doi GBV00000000000758.pica (DE-627)ELV047933593 (ELSEVIER)S0378-7753(19)30967-X DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Li, Huanhuan verfasserin aut Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. Lithium-ion battery Elsevier Multiphysics coupled Elsevier Electrochemical-thermal coupled Elsevier Thermal characteristic analysis Elsevier Parameter optimization Elsevier Liu, Chengyang oth Saini, Ashwani oth Wang, Yaping oth Jiang, Haobin oth Yang, Tao oth Chen, Long oth Pan, Chaofeng oth Shen, Huaping oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:438 year:2019 day:31 month:10 pages:0 https://doi.org/10.1016/j.jpowsour.2019.226974 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 438 2019 31 1031 0 |
allfields_unstemmed |
10.1016/j.jpowsour.2019.226974 doi GBV00000000000758.pica (DE-627)ELV047933593 (ELSEVIER)S0378-7753(19)30967-X DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Li, Huanhuan verfasserin aut Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. Lithium-ion battery Elsevier Multiphysics coupled Elsevier Electrochemical-thermal coupled Elsevier Thermal characteristic analysis Elsevier Parameter optimization Elsevier Liu, Chengyang oth Saini, Ashwani oth Wang, Yaping oth Jiang, Haobin oth Yang, Tao oth Chen, Long oth Pan, Chaofeng oth Shen, Huaping oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:438 year:2019 day:31 month:10 pages:0 https://doi.org/10.1016/j.jpowsour.2019.226974 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 438 2019 31 1031 0 |
allfieldsGer |
10.1016/j.jpowsour.2019.226974 doi GBV00000000000758.pica (DE-627)ELV047933593 (ELSEVIER)S0378-7753(19)30967-X DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Li, Huanhuan verfasserin aut Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. Lithium-ion battery Elsevier Multiphysics coupled Elsevier Electrochemical-thermal coupled Elsevier Thermal characteristic analysis Elsevier Parameter optimization Elsevier Liu, Chengyang oth Saini, Ashwani oth Wang, Yaping oth Jiang, Haobin oth Yang, Tao oth Chen, Long oth Pan, Chaofeng oth Shen, Huaping oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:438 year:2019 day:31 month:10 pages:0 https://doi.org/10.1016/j.jpowsour.2019.226974 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 438 2019 31 1031 0 |
allfieldsSound |
10.1016/j.jpowsour.2019.226974 doi GBV00000000000758.pica (DE-627)ELV047933593 (ELSEVIER)S0378-7753(19)30967-X DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Li, Huanhuan verfasserin aut Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. Lithium-ion battery Elsevier Multiphysics coupled Elsevier Electrochemical-thermal coupled Elsevier Thermal characteristic analysis Elsevier Parameter optimization Elsevier Liu, Chengyang oth Saini, Ashwani oth Wang, Yaping oth Jiang, Haobin oth Yang, Tao oth Chen, Long oth Pan, Chaofeng oth Shen, Huaping oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:438 year:2019 day:31 month:10 pages:0 https://doi.org/10.1016/j.jpowsour.2019.226974 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 438 2019 31 1031 0 |
language |
English |
source |
Enthalten in Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method New York, NY [u.a.] volume:438 year:2019 day:31 month:10 pages:0 |
sourceStr |
Enthalten in Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method New York, NY [u.a.] volume:438 year:2019 day:31 month:10 pages:0 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
Lithium-ion battery Multiphysics coupled Electrochemical-thermal coupled Thermal characteristic analysis Parameter optimization |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
authorswithroles_txt_mv |
Li, Huanhuan @@aut@@ Liu, Chengyang @@oth@@ Saini, Ashwani @@oth@@ Wang, Yaping @@oth@@ Jiang, Haobin @@oth@@ Yang, Tao @@oth@@ Chen, Long @@oth@@ Pan, Chaofeng @@oth@@ Shen, Huaping @@oth@@ |
publishDateDaySort_date |
2019-01-31T00:00:00Z |
hierarchy_top_id |
ELV00098745X |
dewey-sort |
3690 |
id |
ELV047933593 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047933593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626020822.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2019.226974</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000758.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047933593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(19)30967-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Huanhuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lithium-ion battery</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multiphysics coupled</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrochemical-thermal coupled</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal characteristic analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Parameter optimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Chengyang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saini, Ashwani</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yaping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Haobin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Tao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Long</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Chaofeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Huaping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Xiao, Hong ELSEVIER</subfield><subfield code="t">Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method</subfield><subfield code="d">2013</subfield><subfield code="d">the international journal on the science and technology of electrochemical energy systems</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV00098745X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:438</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:31</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpowsour.2019.226974</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">438</subfield><subfield code="j">2019</subfield><subfield code="b">31</subfield><subfield code="c">1031</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Li, Huanhuan |
spellingShingle |
Li, Huanhuan ddc 690 bkl 50.92 Elsevier Lithium-ion battery Elsevier Multiphysics coupled Elsevier Electrochemical-thermal coupled Elsevier Thermal characteristic analysis Elsevier Parameter optimization Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery |
authorStr |
Li, Huanhuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00098745X |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 50.92 bkl Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery Lithium-ion battery Elsevier Multiphysics coupled Elsevier Electrochemical-thermal coupled Elsevier Thermal characteristic analysis Elsevier Parameter optimization Elsevier |
topic |
ddc 690 bkl 50.92 Elsevier Lithium-ion battery Elsevier Multiphysics coupled Elsevier Electrochemical-thermal coupled Elsevier Thermal characteristic analysis Elsevier Parameter optimization |
topic_unstemmed |
ddc 690 bkl 50.92 Elsevier Lithium-ion battery Elsevier Multiphysics coupled Elsevier Electrochemical-thermal coupled Elsevier Thermal characteristic analysis Elsevier Parameter optimization |
topic_browse |
ddc 690 bkl 50.92 Elsevier Lithium-ion battery Elsevier Multiphysics coupled Elsevier Electrochemical-thermal coupled Elsevier Thermal characteristic analysis Elsevier Parameter optimization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
c l cl a s as y w yw h j hj t y ty l c lc c p cp h s hs |
hierarchy_parent_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
hierarchy_parent_id |
ELV00098745X |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00098745X |
title |
Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery |
ctrlnum |
(DE-627)ELV047933593 (ELSEVIER)S0378-7753(19)30967-X |
title_full |
Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery |
author_sort |
Li, Huanhuan |
journal |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
journalStr |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Li, Huanhuan |
container_volume |
438 |
class |
690 VZ 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Huanhuan |
doi_str_mv |
10.1016/j.jpowsour.2019.226974 |
dewey-full |
690 |
title_sort |
coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery |
title_auth |
Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery |
abstract |
A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. |
abstractGer |
A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. |
abstract_unstemmed |
A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery |
url |
https://doi.org/10.1016/j.jpowsour.2019.226974 |
remote_bool |
true |
author2 |
Liu, Chengyang Saini, Ashwani Wang, Yaping Jiang, Haobin Yang, Tao Chen, Long Pan, Chaofeng Shen, Huaping |
author2Str |
Liu, Chengyang Saini, Ashwani Wang, Yaping Jiang, Haobin Yang, Tao Chen, Long Pan, Chaofeng Shen, Huaping |
ppnlink |
ELV00098745X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.jpowsour.2019.226974 |
up_date |
2024-07-06T17:30:43.659Z |
_version_ |
1803851707093876736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV047933593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626020822.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2019.226974</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000758.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV047933593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(19)30967-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Huanhuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coupling multi-physics simulation and response surface methodology for the thermal optimization of ternary prismatic lithium-ion battery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A 3D electrochemical-thermal coupled finite element analysis (FEA) model is established on COMSOL Multiphysics® software for 40 A h ternary prismatic lithium-ion batteries. The input parameters in this model are current C-rate C, battery thickness Th bat , initial battery ambient temperature T int , positive porous electrode thickness Th pos , positive particle diameter D pos , positive electrode solid phase volume fraction ε 1,pos , respectively. Response surface methodology (RSM) with variance analysis (ANOVA) and parametric scanning is employed for simulating and optimizing the data obtained from the Box-Behnken experimental design based on this model. After that, the optimized parameters are verified to evaluate the reliability of the model on heat generation. The results of response surface optimization show that the optimized model error is less than 0.76% and the final temperature drops is 0.55 K. This novel model is reliable and accurate, which is helpful to improving the electrochemical and thermal performance of the battery. Also, it can provide optimized and feasible solutions for other similar kind of batteries, which offer the reference for design and optimization of the battery management system.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lithium-ion battery</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Multiphysics coupled</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrochemical-thermal coupled</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermal characteristic analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Parameter optimization</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Chengyang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saini, Ashwani</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yaping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Haobin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Tao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Long</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Chaofeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shen, Huaping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Xiao, Hong ELSEVIER</subfield><subfield code="t">Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method</subfield><subfield code="d">2013</subfield><subfield code="d">the international journal on the science and technology of electrochemical energy systems</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV00098745X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:438</subfield><subfield code="g">year:2019</subfield><subfield code="g">day:31</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpowsour.2019.226974</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">438</subfield><subfield code="j">2019</subfield><subfield code="b">31</subfield><subfield code="c">1031</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.3993654 |