<ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets
The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z + . Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they mus...
Ausführliche Beschreibung
Autor*in: |
Liu, Ricky Ini [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR - Bandaru, Moulika ELSEVIER, 2022, JCTA, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:170 ; year:2020 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jcta.2019.105136 |
---|
Katalog-ID: |
ELV048184047 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV048184047 | ||
003 | DE-627 | ||
005 | 20230624143153.0 | ||
007 | cr uuu---uuuuu | ||
008 | 191023s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jcta.2019.105136 |2 doi | |
028 | 5 | 2 | |a GBV00000000000781.pica |
035 | |a (DE-627)ELV048184047 | ||
035 | |a (ELSEVIER)S0097-3165(19)30117-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.85 |2 bkl | ||
100 | 1 | |a Liu, Ricky Ini |e verfasserin |4 aut | |
245 | 1 | 0 | |a <ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z + . Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function. | ||
650 | 7 | |a Quasisymmetric function |2 Elsevier | |
650 | 7 | |a <ce:italic>P</ce:italic>-Partition |2 Elsevier | |
650 | 7 | |a Combinatorial hopf algebra |2 Elsevier | |
700 | 1 | |a Weselcouch, Michael |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Bandaru, Moulika ELSEVIER |t IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |d 2022 |d JCTA |g Amsterdam [u.a.] |w (DE-627)ELV00767452X |
773 | 1 | 8 | |g volume:170 |g year:2020 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jcta.2019.105136 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 44.85 |j Kardiologie |j Angiologie |q VZ |
951 | |a AR | ||
952 | |d 170 |j 2020 |h 0 |
author_variant |
r i l ri ril |
---|---|
matchkey_str |
liurickyiniweselcouchmichael:2020----:etlcciaipriineeaigucinqiaeco |
hierarchy_sort_str |
2020 |
bklnumber |
44.85 |
publishDate |
2020 |
allfields |
10.1016/j.jcta.2019.105136 doi GBV00000000000781.pica (DE-627)ELV048184047 (ELSEVIER)S0097-3165(19)30117-7 DE-627 ger DE-627 rakwb eng 610 VZ 44.85 bkl Liu, Ricky Ini verfasserin aut <ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z + . Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function. Quasisymmetric function Elsevier <ce:italic>P</ce:italic>-Partition Elsevier Combinatorial hopf algebra Elsevier Weselcouch, Michael oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:170 year:2020 pages:0 https://doi.org/10.1016/j.jcta.2019.105136 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 170 2020 0 |
spelling |
10.1016/j.jcta.2019.105136 doi GBV00000000000781.pica (DE-627)ELV048184047 (ELSEVIER)S0097-3165(19)30117-7 DE-627 ger DE-627 rakwb eng 610 VZ 44.85 bkl Liu, Ricky Ini verfasserin aut <ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z + . Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function. Quasisymmetric function Elsevier <ce:italic>P</ce:italic>-Partition Elsevier Combinatorial hopf algebra Elsevier Weselcouch, Michael oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:170 year:2020 pages:0 https://doi.org/10.1016/j.jcta.2019.105136 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 170 2020 0 |
allfields_unstemmed |
10.1016/j.jcta.2019.105136 doi GBV00000000000781.pica (DE-627)ELV048184047 (ELSEVIER)S0097-3165(19)30117-7 DE-627 ger DE-627 rakwb eng 610 VZ 44.85 bkl Liu, Ricky Ini verfasserin aut <ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z + . Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function. Quasisymmetric function Elsevier <ce:italic>P</ce:italic>-Partition Elsevier Combinatorial hopf algebra Elsevier Weselcouch, Michael oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:170 year:2020 pages:0 https://doi.org/10.1016/j.jcta.2019.105136 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 170 2020 0 |
allfieldsGer |
10.1016/j.jcta.2019.105136 doi GBV00000000000781.pica (DE-627)ELV048184047 (ELSEVIER)S0097-3165(19)30117-7 DE-627 ger DE-627 rakwb eng 610 VZ 44.85 bkl Liu, Ricky Ini verfasserin aut <ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z + . Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function. Quasisymmetric function Elsevier <ce:italic>P</ce:italic>-Partition Elsevier Combinatorial hopf algebra Elsevier Weselcouch, Michael oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:170 year:2020 pages:0 https://doi.org/10.1016/j.jcta.2019.105136 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 170 2020 0 |
allfieldsSound |
10.1016/j.jcta.2019.105136 doi GBV00000000000781.pica (DE-627)ELV048184047 (ELSEVIER)S0097-3165(19)30117-7 DE-627 ger DE-627 rakwb eng 610 VZ 44.85 bkl Liu, Ricky Ini verfasserin aut <ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z + . Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function. Quasisymmetric function Elsevier <ce:italic>P</ce:italic>-Partition Elsevier Combinatorial hopf algebra Elsevier Weselcouch, Michael oth Enthalten in Elsevier Bandaru, Moulika ELSEVIER IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR 2022 JCTA Amsterdam [u.a.] (DE-627)ELV00767452X volume:170 year:2020 pages:0 https://doi.org/10.1016/j.jcta.2019.105136 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.85 Kardiologie Angiologie VZ AR 170 2020 0 |
language |
English |
source |
Enthalten in IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR Amsterdam [u.a.] volume:170 year:2020 pages:0 |
sourceStr |
Enthalten in IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR Amsterdam [u.a.] volume:170 year:2020 pages:0 |
format_phy_str_mv |
Article |
bklname |
Kardiologie Angiologie |
institution |
findex.gbv.de |
topic_facet |
Quasisymmetric function <ce:italic>P</ce:italic>-Partition Combinatorial hopf algebra |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
authorswithroles_txt_mv |
Liu, Ricky Ini @@aut@@ Weselcouch, Michael @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV00767452X |
dewey-sort |
3610 |
id |
ELV048184047 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048184047</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624143153.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcta.2019.105136</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000781.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048184047</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0097-3165(19)30117-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Ricky Ini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a"><ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z + . Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quasisymmetric function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a"><ce:italic>P</ce:italic>-Partition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatorial hopf algebra</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weselcouch, Michael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Bandaru, Moulika ELSEVIER</subfield><subfield code="t">IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR</subfield><subfield code="d">2022</subfield><subfield code="d">JCTA</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00767452X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:170</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jcta.2019.105136</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">170</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Liu, Ricky Ini |
spellingShingle |
Liu, Ricky Ini ddc 610 bkl 44.85 Elsevier Quasisymmetric function Elsevier <ce:italic>P</ce:italic>-Partition Elsevier Combinatorial hopf algebra <ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets |
authorStr |
Liu, Ricky Ini |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00767452X |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.85 bkl <ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets Quasisymmetric function Elsevier <ce:italic>P</ce:italic>-Partition Elsevier Combinatorial hopf algebra Elsevier |
topic |
ddc 610 bkl 44.85 Elsevier Quasisymmetric function Elsevier <ce:italic>P</ce:italic>-Partition Elsevier Combinatorial hopf algebra |
topic_unstemmed |
ddc 610 bkl 44.85 Elsevier Quasisymmetric function Elsevier <ce:italic>P</ce:italic>-Partition Elsevier Combinatorial hopf algebra |
topic_browse |
ddc 610 bkl 44.85 Elsevier Quasisymmetric function Elsevier <ce:italic>P</ce:italic>-Partition Elsevier Combinatorial hopf algebra |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m w mw |
hierarchy_parent_title |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
hierarchy_parent_id |
ELV00767452X |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00767452X |
title |
<ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets |
ctrlnum |
(DE-627)ELV048184047 (ELSEVIER)S0097-3165(19)30117-7 |
title_full |
<ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets |
author_sort |
Liu, Ricky Ini |
journal |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
journalStr |
IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Liu, Ricky Ini |
container_volume |
170 |
class |
610 VZ 44.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Ricky Ini |
doi_str_mv |
10.1016/j.jcta.2019.105136 |
dewey-full |
610 |
title_sort |
<ce:italic>p</ce:italic>-partition generating function equivalence of naturally labeled posets |
title_auth |
<ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets |
abstract |
The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z + . Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function. |
abstractGer |
The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z + . Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function. |
abstract_unstemmed |
The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z + . Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
<ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets |
url |
https://doi.org/10.1016/j.jcta.2019.105136 |
remote_bool |
true |
author2 |
Weselcouch, Michael |
author2Str |
Weselcouch, Michael |
ppnlink |
ELV00767452X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.jcta.2019.105136 |
up_date |
2024-07-06T18:09:58.529Z |
_version_ |
1803854176354041856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048184047</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624143153.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">191023s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcta.2019.105136</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">GBV00000000000781.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048184047</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0097-3165(19)30117-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Ricky Ini</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a"><ce:italic>P</ce:italic>-partition generating function equivalence of naturally labeled posets</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The P-partition generating function of a (naturally labeled) poset P is a quasisymmetric function enumerating order-preserving maps from P to Z + . Using the Hopf algebra of posets, we give necessary conditions for two posets to have the same generating function. In particular, we show that they must have the same number of antichains of each size, as well as the same shape (as defined by Greene). We also discuss which shapes guarantee uniqueness of the P-partition generating function and give a method of constructing pairs of non-isomorphic posets with the same generating function.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quasisymmetric function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a"><ce:italic>P</ce:italic>-Partition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatorial hopf algebra</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weselcouch, Michael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Bandaru, Moulika ELSEVIER</subfield><subfield code="t">IMPLICATIONS OF THE BRUGADA SIGN IN A CARDIAC TRANSPLANT DONOR</subfield><subfield code="d">2022</subfield><subfield code="d">JCTA</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00767452X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:170</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jcta.2019.105136</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="j">Kardiologie</subfield><subfield code="j">Angiologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">170</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4006615 |