The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression
The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through...
Ausführliche Beschreibung
Autor*in: |
Brunelli, R. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules - Liu, Min-Jie ELSEVIER, 2016, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:100 ; year:2019 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jmbbm.2019.103377 |
---|
Katalog-ID: |
ELV048306584 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV048306584 | ||
003 | DE-627 | ||
005 | 20230626021623.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200108s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmbbm.2019.103377 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000790.pica |
035 | |a (DE-627)ELV048306584 | ||
035 | |a (ELSEVIER)S1751-6161(19)30467-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 52.43 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.42 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Brunelli, R. |e verfasserin |4 aut | |
245 | 1 | 4 | |a The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression |
264 | 1 | |c 2019transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. | ||
520 | |a The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. | ||
650 | 7 | |a PBS |2 Elsevier | |
650 | 7 | |a UV |2 Elsevier | |
650 | 7 | |a HMSA |2 Elsevier | |
650 | 7 | |a WJ |2 Elsevier | |
650 | 7 | |a IM |2 Elsevier | |
650 | 7 | |a MR |2 Elsevier | |
650 | 7 | |a VM |2 Elsevier | |
650 | 7 | |a SA |2 Elsevier | |
650 | 7 | |a 2D-FFT |2 Elsevier | |
650 | 7 | |a FE |2 Elsevier | |
700 | 1 | |a De Spirito, M. |4 oth | |
700 | 1 | |a Giancotti, A. |4 oth | |
700 | 1 | |a Palmieri, V. |4 oth | |
700 | 1 | |a Parasassi, T. |4 oth | |
700 | 1 | |a Di Mascio, D. |4 oth | |
700 | 1 | |a Flammini, G. |4 oth | |
700 | 1 | |a D'Ambrosio, V. |4 oth | |
700 | 1 | |a Monti, M. |4 oth | |
700 | 1 | |a Boccaccio, A. |4 oth | |
700 | 1 | |a Pappalettere, C. |4 oth | |
700 | 1 | |a Ficarella, E. |4 oth | |
700 | 1 | |a Papi, M. |4 oth | |
700 | 1 | |a Lamberti, L. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Liu, Min-Jie ELSEVIER |t A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |d 2016 |g Amsterdam [u.a.] |w (DE-627)ELV009727671 |
773 | 1 | 8 | |g volume:100 |g year:2019 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmbbm.2019.103377 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 52.43 |j Kältetechnik |q VZ |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |q VZ |
936 | b | k | |a 52.42 |j Heizungstechnik |j Lüftungstechnik |j Klimatechnik |q VZ |
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 100 |j 2019 |h 0 |
author_variant |
r b rb |
---|---|
matchkey_str |
brunellirdespiritomgiancottiapalmierivpa:2019----:hboehncotemiiacrwatnelrlsneoyaipoiiny |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
52.43 52.52 52.42 50.38 |
publishDate |
2019 |
allfields |
10.1016/j.jmbbm.2019.103377 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000790.pica (DE-627)ELV048306584 (ELSEVIER)S1751-6161(19)30467-9 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Brunelli, R. verfasserin aut The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. PBS Elsevier UV Elsevier HMSA Elsevier WJ Elsevier IM Elsevier MR Elsevier VM Elsevier SA Elsevier 2D-FFT Elsevier FE Elsevier De Spirito, M. oth Giancotti, A. oth Palmieri, V. oth Parasassi, T. oth Di Mascio, D. oth Flammini, G. oth D'Ambrosio, V. oth Monti, M. oth Boccaccio, A. oth Pappalettere, C. oth Ficarella, E. oth Papi, M. oth Lamberti, L. oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:100 year:2019 pages:0 https://doi.org/10.1016/j.jmbbm.2019.103377 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 100 2019 0 |
spelling |
10.1016/j.jmbbm.2019.103377 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000790.pica (DE-627)ELV048306584 (ELSEVIER)S1751-6161(19)30467-9 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Brunelli, R. verfasserin aut The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. PBS Elsevier UV Elsevier HMSA Elsevier WJ Elsevier IM Elsevier MR Elsevier VM Elsevier SA Elsevier 2D-FFT Elsevier FE Elsevier De Spirito, M. oth Giancotti, A. oth Palmieri, V. oth Parasassi, T. oth Di Mascio, D. oth Flammini, G. oth D'Ambrosio, V. oth Monti, M. oth Boccaccio, A. oth Pappalettere, C. oth Ficarella, E. oth Papi, M. oth Lamberti, L. oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:100 year:2019 pages:0 https://doi.org/10.1016/j.jmbbm.2019.103377 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 100 2019 0 |
allfields_unstemmed |
10.1016/j.jmbbm.2019.103377 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000790.pica (DE-627)ELV048306584 (ELSEVIER)S1751-6161(19)30467-9 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Brunelli, R. verfasserin aut The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. PBS Elsevier UV Elsevier HMSA Elsevier WJ Elsevier IM Elsevier MR Elsevier VM Elsevier SA Elsevier 2D-FFT Elsevier FE Elsevier De Spirito, M. oth Giancotti, A. oth Palmieri, V. oth Parasassi, T. oth Di Mascio, D. oth Flammini, G. oth D'Ambrosio, V. oth Monti, M. oth Boccaccio, A. oth Pappalettere, C. oth Ficarella, E. oth Papi, M. oth Lamberti, L. oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:100 year:2019 pages:0 https://doi.org/10.1016/j.jmbbm.2019.103377 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 100 2019 0 |
allfieldsGer |
10.1016/j.jmbbm.2019.103377 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000790.pica (DE-627)ELV048306584 (ELSEVIER)S1751-6161(19)30467-9 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Brunelli, R. verfasserin aut The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. PBS Elsevier UV Elsevier HMSA Elsevier WJ Elsevier IM Elsevier MR Elsevier VM Elsevier SA Elsevier 2D-FFT Elsevier FE Elsevier De Spirito, M. oth Giancotti, A. oth Palmieri, V. oth Parasassi, T. oth Di Mascio, D. oth Flammini, G. oth D'Ambrosio, V. oth Monti, M. oth Boccaccio, A. oth Pappalettere, C. oth Ficarella, E. oth Papi, M. oth Lamberti, L. oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:100 year:2019 pages:0 https://doi.org/10.1016/j.jmbbm.2019.103377 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 100 2019 0 |
allfieldsSound |
10.1016/j.jmbbm.2019.103377 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000790.pica (DE-627)ELV048306584 (ELSEVIER)S1751-6161(19)30467-9 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Brunelli, R. verfasserin aut The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. PBS Elsevier UV Elsevier HMSA Elsevier WJ Elsevier IM Elsevier MR Elsevier VM Elsevier SA Elsevier 2D-FFT Elsevier FE Elsevier De Spirito, M. oth Giancotti, A. oth Palmieri, V. oth Parasassi, T. oth Di Mascio, D. oth Flammini, G. oth D'Ambrosio, V. oth Monti, M. oth Boccaccio, A. oth Pappalettere, C. oth Ficarella, E. oth Papi, M. oth Lamberti, L. oth Enthalten in Elsevier Liu, Min-Jie ELSEVIER A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules 2016 Amsterdam [u.a.] (DE-627)ELV009727671 volume:100 year:2019 pages:0 https://doi.org/10.1016/j.jmbbm.2019.103377 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 100 2019 0 |
language |
English |
source |
Enthalten in A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules Amsterdam [u.a.] volume:100 year:2019 pages:0 |
sourceStr |
Enthalten in A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules Amsterdam [u.a.] volume:100 year:2019 pages:0 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Thermische Energieerzeugung Wärmetechnik Heizungstechnik Lüftungstechnik Klimatechnik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
PBS UV HMSA WJ IM MR VM SA 2D-FFT FE |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
authorswithroles_txt_mv |
Brunelli, R. @@aut@@ De Spirito, M. @@oth@@ Giancotti, A. @@oth@@ Palmieri, V. @@oth@@ Parasassi, T. @@oth@@ Di Mascio, D. @@oth@@ Flammini, G. @@oth@@ D'Ambrosio, V. @@oth@@ Monti, M. @@oth@@ Boccaccio, A. @@oth@@ Pappalettere, C. @@oth@@ Ficarella, E. @@oth@@ Papi, M. @@oth@@ Lamberti, L. @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV009727671 |
dewey-sort |
3690 |
id |
ELV048306584 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048306584</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626021623.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmbbm.2019.103377</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000790.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048306584</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1751-6161(19)30467-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brunelli, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PBS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">UV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HMSA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">WJ</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">VM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">2D-FFT</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FE</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Spirito, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giancotti, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palmieri, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parasassi, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Mascio, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Flammini, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">D'Ambrosio, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Monti, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boccaccio, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pappalettere, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ficarella, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papi, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lamberti, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Min-Jie ELSEVIER</subfield><subfield code="t">A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules</subfield><subfield code="d">2016</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009727671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmbbm.2019.103377</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2019</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Brunelli, R. |
spellingShingle |
Brunelli, R. ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier PBS Elsevier UV Elsevier HMSA Elsevier WJ Elsevier IM Elsevier MR Elsevier VM Elsevier SA Elsevier 2D-FFT Elsevier FE The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression |
authorStr |
Brunelli, R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV009727671 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression PBS Elsevier UV Elsevier HMSA Elsevier WJ Elsevier IM Elsevier MR Elsevier VM Elsevier SA Elsevier 2D-FFT Elsevier FE Elsevier |
topic |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier PBS Elsevier UV Elsevier HMSA Elsevier WJ Elsevier IM Elsevier MR Elsevier VM Elsevier SA Elsevier 2D-FFT Elsevier FE |
topic_unstemmed |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier PBS Elsevier UV Elsevier HMSA Elsevier WJ Elsevier IM Elsevier MR Elsevier VM Elsevier SA Elsevier 2D-FFT Elsevier FE |
topic_browse |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Elsevier PBS Elsevier UV Elsevier HMSA Elsevier WJ Elsevier IM Elsevier MR Elsevier VM Elsevier SA Elsevier 2D-FFT Elsevier FE |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s m d sm smd a g ag v p vp t p tp m d d md mdd g f gf v d vd m m mm a b ab c p cp e f ef m p mp l l ll |
hierarchy_parent_title |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
hierarchy_parent_id |
ELV009727671 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV009727671 |
title |
The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression |
ctrlnum |
(DE-627)ELV048306584 (ELSEVIER)S1751-6161(19)30467-9 |
title_full |
The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression |
author_sort |
Brunelli, R. |
journal |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
journalStr |
A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Brunelli, R. |
container_volume |
100 |
class |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Brunelli, R. |
doi_str_mv |
10.1016/j.jmbbm.2019.103377 |
dewey-full |
690 |
title_sort |
biomechanics of the umbilical cord wharton jelly: roles in hemodynamic proficiency and resistance to compression |
title_auth |
The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression |
abstract |
The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. |
abstractGer |
The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. |
abstract_unstemmed |
The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression |
url |
https://doi.org/10.1016/j.jmbbm.2019.103377 |
remote_bool |
true |
author2 |
De Spirito, M. Giancotti, A. Palmieri, V. Parasassi, T. Di Mascio, D. Flammini, G. D'Ambrosio, V. Monti, M. Boccaccio, A. Pappalettere, C. Ficarella, E. Papi, M. Lamberti, L. |
author2Str |
De Spirito, M. Giancotti, A. Palmieri, V. Parasassi, T. Di Mascio, D. Flammini, G. D'Ambrosio, V. Monti, M. Boccaccio, A. Pappalettere, C. Ficarella, E. Papi, M. Lamberti, L. |
ppnlink |
ELV009727671 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.jmbbm.2019.103377 |
up_date |
2024-07-06T18:28:58.685Z |
_version_ |
1803855371894259712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048306584</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626021623.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmbbm.2019.103377</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000790.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048306584</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1751-6161(19)30467-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brunelli, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The biomechanics of the umbilical cord Wharton Jelly: Roles in hemodynamic proficiency and resistance to compression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The umbilical cord is a complex structure containing three vessels, one straight vein and two coiled arteries, encased by the Wharton Jelly (WJ) a spongy structure made of collagen and hydrated macromolecules. Fetal blood reaches the placenta through the arteries and flows back to the fetus through the vein. The role of the WJ in maintaining cord circulation proficiency and the ultimate reason for arterial coiling still lack of reasonable mechanistic interpretations. We performed biaxial tension tests and evidenced significant differences in the mechanical properties of the core and peripheral WJ. The core region, located between the arteries and the vein, resulted rather stiffer close to the fetus. Finite element modelling and optimization based inverse method were used to create 2D and 3D models of the cord and to simulate stress distribution in different hemodynamic conditions, compressive loads and arterial coiling. We recorded a facilitated stress transmission from the arteries to the vein through the soft core of periplacental WJ. This condition generates a pressure gradient that boosts the venous backflow circulation towards the fetus. Peripheral WJ allows arteries to act as pressure buffering chambers during the cardiac diastole and helps to dissipate compressive forces away from vessels. Altered WJ biomechanics may represent the structural basis of cord vulnerability in many high-risk clinical conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PBS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">UV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HMSA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">WJ</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">IM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">VM</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SA</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">2D-FFT</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">FE</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Spirito, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giancotti, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palmieri, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parasassi, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Mascio, D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Flammini, G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">D'Ambrosio, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Monti, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boccaccio, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pappalettere, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ficarella, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Papi, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lamberti, L.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Liu, Min-Jie ELSEVIER</subfield><subfield code="t">A volume-shrinkage-based method for quantifying the inward solidification heat transfer of a phase change material filled in spherical capsules</subfield><subfield code="d">2016</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV009727671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:100</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmbbm.2019.103377</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">100</subfield><subfield code="j">2019</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4013157 |