Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material
In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of...
Ausführliche Beschreibung
Autor*in: |
Zhang, Liguo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration - Rey, F. ELSEVIER, 2018, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2020 ; number:2 ; day:1 ; month:02 ; pages:1760-1765 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.ceramint.2019.09.150 |
---|
Katalog-ID: |
ELV048560200 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV048560200 | ||
003 | DE-627 | ||
005 | 20230626022233.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200108s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ceramint.2019.09.150 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000818.pica |
035 | |a (DE-627)ELV048560200 | ||
035 | |a (ELSEVIER)S0272-8842(19)32681-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Zhang, Liguo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material |
264 | 1 | |c 2020transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. | ||
520 | |a In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. | ||
650 | 7 | |a Bone-repairing material |2 Elsevier | |
650 | 7 | |a Composite ceramics |2 Elsevier | |
650 | 7 | |a SiAlON-Si3N4 based |2 Elsevier | |
650 | 7 | |a Biocompatible |2 Elsevier | |
700 | 1 | |a Liu, Xiaojie |4 oth | |
700 | 1 | |a Li, Miao |4 oth | |
700 | 1 | |a Xu, Enxia |4 oth | |
700 | 1 | |a Zhao, Fei |4 oth | |
700 | 1 | |a Yuan, Huiyu |4 oth | |
700 | 1 | |a Sun, Xu |4 oth | |
700 | 1 | |a Zhang, Can |4 oth | |
700 | 1 | |a Gao, Lu |4 oth | |
700 | 1 | |a Gao, Jinxing |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Rey, F. ELSEVIER |t Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |d 2018 |g Amsterdam [u.a.] |w (DE-627)ELV000899798 |
773 | 1 | 8 | |g volume:46 |g year:2020 |g number:2 |g day:1 |g month:02 |g pages:1760-1765 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ceramint.2019.09.150 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 46 |j 2020 |e 2 |b 1 |c 0201 |h 1760-1765 |g 6 |
author_variant |
l z lz |
---|---|
matchkey_str |
zhangliguoliuxiaojielimiaoxuenxiazhaofei:2020----:esbltosaos34opstcrmcsptnilo |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2020 |
allfields |
10.1016/j.ceramint.2019.09.150 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000818.pica (DE-627)ELV048560200 (ELSEVIER)S0272-8842(19)32681-1 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Zhang, Liguo verfasserin aut Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material 2020transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. Bone-repairing material Elsevier Composite ceramics Elsevier SiAlON-Si3N4 based Elsevier Biocompatible Elsevier Liu, Xiaojie oth Li, Miao oth Xu, Enxia oth Zhao, Fei oth Yuan, Huiyu oth Sun, Xu oth Zhang, Can oth Gao, Lu oth Gao, Jinxing oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:2 day:1 month:02 pages:1760-1765 extent:6 https://doi.org/10.1016/j.ceramint.2019.09.150 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 2 1 0201 1760-1765 6 |
spelling |
10.1016/j.ceramint.2019.09.150 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000818.pica (DE-627)ELV048560200 (ELSEVIER)S0272-8842(19)32681-1 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Zhang, Liguo verfasserin aut Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material 2020transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. Bone-repairing material Elsevier Composite ceramics Elsevier SiAlON-Si3N4 based Elsevier Biocompatible Elsevier Liu, Xiaojie oth Li, Miao oth Xu, Enxia oth Zhao, Fei oth Yuan, Huiyu oth Sun, Xu oth Zhang, Can oth Gao, Lu oth Gao, Jinxing oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:2 day:1 month:02 pages:1760-1765 extent:6 https://doi.org/10.1016/j.ceramint.2019.09.150 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 2 1 0201 1760-1765 6 |
allfields_unstemmed |
10.1016/j.ceramint.2019.09.150 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000818.pica (DE-627)ELV048560200 (ELSEVIER)S0272-8842(19)32681-1 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Zhang, Liguo verfasserin aut Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material 2020transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. Bone-repairing material Elsevier Composite ceramics Elsevier SiAlON-Si3N4 based Elsevier Biocompatible Elsevier Liu, Xiaojie oth Li, Miao oth Xu, Enxia oth Zhao, Fei oth Yuan, Huiyu oth Sun, Xu oth Zhang, Can oth Gao, Lu oth Gao, Jinxing oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:2 day:1 month:02 pages:1760-1765 extent:6 https://doi.org/10.1016/j.ceramint.2019.09.150 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 2 1 0201 1760-1765 6 |
allfieldsGer |
10.1016/j.ceramint.2019.09.150 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000818.pica (DE-627)ELV048560200 (ELSEVIER)S0272-8842(19)32681-1 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Zhang, Liguo verfasserin aut Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material 2020transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. Bone-repairing material Elsevier Composite ceramics Elsevier SiAlON-Si3N4 based Elsevier Biocompatible Elsevier Liu, Xiaojie oth Li, Miao oth Xu, Enxia oth Zhao, Fei oth Yuan, Huiyu oth Sun, Xu oth Zhang, Can oth Gao, Lu oth Gao, Jinxing oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:2 day:1 month:02 pages:1760-1765 extent:6 https://doi.org/10.1016/j.ceramint.2019.09.150 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 2 1 0201 1760-1765 6 |
allfieldsSound |
10.1016/j.ceramint.2019.09.150 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000818.pica (DE-627)ELV048560200 (ELSEVIER)S0272-8842(19)32681-1 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Zhang, Liguo verfasserin aut Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material 2020transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. Bone-repairing material Elsevier Composite ceramics Elsevier SiAlON-Si3N4 based Elsevier Biocompatible Elsevier Liu, Xiaojie oth Li, Miao oth Xu, Enxia oth Zhao, Fei oth Yuan, Huiyu oth Sun, Xu oth Zhang, Can oth Gao, Lu oth Gao, Jinxing oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:2 day:1 month:02 pages:1760-1765 extent:6 https://doi.org/10.1016/j.ceramint.2019.09.150 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 2 1 0201 1760-1765 6 |
language |
English |
source |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:46 year:2020 number:2 day:1 month:02 pages:1760-1765 extent:6 |
sourceStr |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:46 year:2020 number:2 day:1 month:02 pages:1760-1765 extent:6 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Bone-repairing material Composite ceramics SiAlON-Si3N4 based Biocompatible |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
authorswithroles_txt_mv |
Zhang, Liguo @@aut@@ Liu, Xiaojie @@oth@@ Li, Miao @@oth@@ Xu, Enxia @@oth@@ Zhao, Fei @@oth@@ Yuan, Huiyu @@oth@@ Sun, Xu @@oth@@ Zhang, Can @@oth@@ Gao, Lu @@oth@@ Gao, Jinxing @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV000899798 |
dewey-sort |
3333.7 |
id |
ELV048560200 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048560200</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626022233.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2019.09.150</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000818.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048560200</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(19)32681-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Liguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bone-repairing material</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Composite ceramics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SiAlON-Si3N4 based</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biocompatible</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiaojie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Miao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Enxia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Fei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Huiyu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Xu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Can</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Lu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Jinxing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1760-1765</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2019.09.150</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">1</subfield><subfield code="c">0201</subfield><subfield code="h">1760-1765</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
author |
Zhang, Liguo |
spellingShingle |
Zhang, Liguo ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Bone-repairing material Elsevier Composite ceramics Elsevier SiAlON-Si3N4 based Elsevier Biocompatible Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material |
authorStr |
Zhang, Liguo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000899798 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material Bone-repairing material Elsevier Composite ceramics Elsevier SiAlON-Si3N4 based Elsevier Biocompatible Elsevier |
topic |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Bone-repairing material Elsevier Composite ceramics Elsevier SiAlON-Si3N4 based Elsevier Biocompatible |
topic_unstemmed |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Bone-repairing material Elsevier Composite ceramics Elsevier SiAlON-Si3N4 based Elsevier Biocompatible |
topic_browse |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Bone-repairing material Elsevier Composite ceramics Elsevier SiAlON-Si3N4 based Elsevier Biocompatible |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x l xl m l ml e x ex f z fz h y hy x s xs c z cz l g lg j g jg |
hierarchy_parent_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
hierarchy_parent_id |
ELV000899798 |
dewey-tens |
330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000899798 |
title |
Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material |
ctrlnum |
(DE-627)ELV048560200 (ELSEVIER)S0272-8842(19)32681-1 |
title_full |
Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material |
author_sort |
Zhang, Liguo |
journal |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
journalStr |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
1760 |
author_browse |
Zhang, Liguo |
container_volume |
46 |
physical |
6 |
class |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Liguo |
doi_str_mv |
10.1016/j.ceramint.2019.09.150 |
dewey-full |
333.7 610 |
title_sort |
feasibility of sialon–si3n4 composite ceramic as a potential bone repairing material |
title_auth |
Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material |
abstract |
In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. |
abstractGer |
In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. |
abstract_unstemmed |
In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO |
container_issue |
2 |
title_short |
Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material |
url |
https://doi.org/10.1016/j.ceramint.2019.09.150 |
remote_bool |
true |
author2 |
Liu, Xiaojie Li, Miao Xu, Enxia Zhao, Fei Yuan, Huiyu Sun, Xu Zhang, Can Gao, Lu Gao, Jinxing |
author2Str |
Liu, Xiaojie Li, Miao Xu, Enxia Zhao, Fei Yuan, Huiyu Sun, Xu Zhang, Can Gao, Lu Gao, Jinxing |
ppnlink |
ELV000899798 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.ceramint.2019.09.150 |
up_date |
2024-07-06T19:10:39.836Z |
_version_ |
1803857994540122112 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048560200</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626022233.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2019.09.150</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000818.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048560200</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(19)32681-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Liguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Feasibility of SiAlON–Si3N4 composite ceramic as a potential bone repairing material</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, SiAlON–Si3N4 composite ceramic are prepared by direct nitridation and investigated to overcome the limitations associated with ceramic Si3N4, which includes the difficulty in fabricating ceramic Si3N4 into shaped parts for use in the human body. Phase composition and microstructure of the SiAlON–Si3N4 composites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively, and the porosity, bulk density, compressive strength, and ion release were also measured. The biological properties were evaluated by bone cell cultures on the ceramic surfaces. Results show that Si4Al2O2N6 is formed by the reaction of Al, Si, and Al2O3 with nitrogen at high temperature that forms Si3N4, thereby fabricating SiAlON–Si3N4 composite ceramics. Some α-Si3N4 grains underwent a phase transition from α-to β-Si3N4 fiber at high temperature. Porosity of the samples increases with increasing Si3N4 content, while the bulk density of the samples decreases. The compressive strength increases and then slightly decreases with increasing Si3N4 content. Water leaching experiments of the SiAlON–Si3N4 composite ceramics reveal that the composites exhibit outstanding chemical stability. Studies using bone cell culture indicate that the cells present a fusiform and extend two or three thin pseudopodia. The phenomena demonstrate that MC3T3-E1 cells have excellent growth activity and have the potential ability to proliferate to osteocytes on the surfaces of the samples, thus suggesting that SiAlON–Si3N4 based ceramics are biocompatible and could be implemented as a potential bone-repairing material.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bone-repairing material</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Composite ceramics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SiAlON-Si3N4 based</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biocompatible</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xiaojie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Miao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Enxia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Fei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuan, Huiyu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Xu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Can</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Lu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Jinxing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1760-1765</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2019.09.150</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">1</subfield><subfield code="c">0201</subfield><subfield code="h">1760-1765</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
score |
7.400755 |