Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm
The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya...
Ausführliche Beschreibung
Autor*in: |
Son, Nguyen Ngoc [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation - Liu, Xiang ELSEVIER, 2015, the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:87 ; year:2020 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.engappai.2019.103317 |
---|
Katalog-ID: |
ELV048578142 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV048578142 | ||
003 | DE-627 | ||
005 | 20230626022305.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200108s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.engappai.2019.103317 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica |
035 | |a (DE-627)ELV048578142 | ||
035 | |a (ELSEVIER)S0952-1976(19)30270-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.00 |2 bkl | ||
100 | 1 | |a Son, Nguyen Ngoc |e verfasserin |4 aut | |
245 | 1 | 0 | |a Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. | ||
520 | |a The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. | ||
650 | 7 | |a Jaya algorithm |2 Elsevier | |
650 | 7 | |a Nonlinear hysteresis |2 Elsevier | |
650 | 7 | |a Parameters identification |2 Elsevier | |
650 | 7 | |a Differential evolution |2 Elsevier | |
650 | 7 | |a Piezoelectric actuator |2 Elsevier | |
700 | 1 | |a Van Kien, Cao |4 oth | |
700 | 1 | |a Anh, Ho Pham Huy |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Liu, Xiang ELSEVIER |t Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |d 2015 |d the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control |g Amsterdam [u.a.] |w (DE-627)ELV013402978 |
773 | 1 | 8 | |g volume:87 |g year:2020 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.engappai.2019.103317 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.00 |j Medizin: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 87 |j 2020 |h 0 |
author_variant |
n n s nn nns |
---|---|
matchkey_str |
sonnguyenngocvankiencaoanhhophamhuy:2020----:aaeesdniiainfocehseeimdlopeolcrccutruigyrddpieif |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
44.00 |
publishDate |
2020 |
allfields |
10.1016/j.engappai.2019.103317 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV048578142 (ELSEVIER)S0952-1976(19)30270-2 DE-627 ger DE-627 rakwb eng 540 VZ 610 VZ 44.00 bkl Son, Nguyen Ngoc verfasserin aut Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. Jaya algorithm Elsevier Nonlinear hysteresis Elsevier Parameters identification Elsevier Differential evolution Elsevier Piezoelectric actuator Elsevier Van Kien, Cao oth Anh, Ho Pham Huy oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:87 year:2020 pages:0 https://doi.org/10.1016/j.engappai.2019.103317 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 87 2020 0 |
spelling |
10.1016/j.engappai.2019.103317 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV048578142 (ELSEVIER)S0952-1976(19)30270-2 DE-627 ger DE-627 rakwb eng 540 VZ 610 VZ 44.00 bkl Son, Nguyen Ngoc verfasserin aut Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. Jaya algorithm Elsevier Nonlinear hysteresis Elsevier Parameters identification Elsevier Differential evolution Elsevier Piezoelectric actuator Elsevier Van Kien, Cao oth Anh, Ho Pham Huy oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:87 year:2020 pages:0 https://doi.org/10.1016/j.engappai.2019.103317 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 87 2020 0 |
allfields_unstemmed |
10.1016/j.engappai.2019.103317 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV048578142 (ELSEVIER)S0952-1976(19)30270-2 DE-627 ger DE-627 rakwb eng 540 VZ 610 VZ 44.00 bkl Son, Nguyen Ngoc verfasserin aut Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. Jaya algorithm Elsevier Nonlinear hysteresis Elsevier Parameters identification Elsevier Differential evolution Elsevier Piezoelectric actuator Elsevier Van Kien, Cao oth Anh, Ho Pham Huy oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:87 year:2020 pages:0 https://doi.org/10.1016/j.engappai.2019.103317 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 87 2020 0 |
allfieldsGer |
10.1016/j.engappai.2019.103317 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV048578142 (ELSEVIER)S0952-1976(19)30270-2 DE-627 ger DE-627 rakwb eng 540 VZ 610 VZ 44.00 bkl Son, Nguyen Ngoc verfasserin aut Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. Jaya algorithm Elsevier Nonlinear hysteresis Elsevier Parameters identification Elsevier Differential evolution Elsevier Piezoelectric actuator Elsevier Van Kien, Cao oth Anh, Ho Pham Huy oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:87 year:2020 pages:0 https://doi.org/10.1016/j.engappai.2019.103317 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 87 2020 0 |
allfieldsSound |
10.1016/j.engappai.2019.103317 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV048578142 (ELSEVIER)S0952-1976(19)30270-2 DE-627 ger DE-627 rakwb eng 540 VZ 610 VZ 44.00 bkl Son, Nguyen Ngoc verfasserin aut Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. Jaya algorithm Elsevier Nonlinear hysteresis Elsevier Parameters identification Elsevier Differential evolution Elsevier Piezoelectric actuator Elsevier Van Kien, Cao oth Anh, Ho Pham Huy oth Enthalten in Elsevier Science Liu, Xiang ELSEVIER Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation 2015 the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV013402978 volume:87 year:2020 pages:0 https://doi.org/10.1016/j.engappai.2019.103317 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.00 Medizin: Allgemeines VZ AR 87 2020 0 |
language |
English |
source |
Enthalten in Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation Amsterdam [u.a.] volume:87 year:2020 pages:0 |
sourceStr |
Enthalten in Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation Amsterdam [u.a.] volume:87 year:2020 pages:0 |
format_phy_str_mv |
Article |
bklname |
Medizin: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Jaya algorithm Nonlinear hysteresis Parameters identification Differential evolution Piezoelectric actuator |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
authorswithroles_txt_mv |
Son, Nguyen Ngoc @@aut@@ Van Kien, Cao @@oth@@ Anh, Ho Pham Huy @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV013402978 |
dewey-sort |
3540 |
id |
ELV048578142 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048578142</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626022305.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engappai.2019.103317</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048578142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0952-1976(19)30270-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Son, Nguyen Ngoc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Jaya algorithm</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear hysteresis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Parameters identification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential evolution</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Piezoelectric actuator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Kien, Cao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anh, Ho Pham Huy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Liu, Xiang ELSEVIER</subfield><subfield code="t">Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation</subfield><subfield code="d">2015</subfield><subfield code="d">the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013402978</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:87</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.engappai.2019.103317</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">87</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Son, Nguyen Ngoc |
spellingShingle |
Son, Nguyen Ngoc ddc 540 ddc 610 bkl 44.00 Elsevier Jaya algorithm Elsevier Nonlinear hysteresis Elsevier Parameters identification Elsevier Differential evolution Elsevier Piezoelectric actuator Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm |
authorStr |
Son, Nguyen Ngoc |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV013402978 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ 610 VZ 44.00 bkl Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm Jaya algorithm Elsevier Nonlinear hysteresis Elsevier Parameters identification Elsevier Differential evolution Elsevier Piezoelectric actuator Elsevier |
topic |
ddc 540 ddc 610 bkl 44.00 Elsevier Jaya algorithm Elsevier Nonlinear hysteresis Elsevier Parameters identification Elsevier Differential evolution Elsevier Piezoelectric actuator |
topic_unstemmed |
ddc 540 ddc 610 bkl 44.00 Elsevier Jaya algorithm Elsevier Nonlinear hysteresis Elsevier Parameters identification Elsevier Differential evolution Elsevier Piezoelectric actuator |
topic_browse |
ddc 540 ddc 610 bkl 44.00 Elsevier Jaya algorithm Elsevier Nonlinear hysteresis Elsevier Parameters identification Elsevier Differential evolution Elsevier Piezoelectric actuator |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
k c v kc kcv h p h a hph hpha |
hierarchy_parent_title |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
hierarchy_parent_id |
ELV013402978 |
dewey-tens |
540 - Chemistry 610 - Medicine & health |
hierarchy_top_title |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV013402978 |
title |
Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm |
ctrlnum |
(DE-627)ELV048578142 (ELSEVIER)S0952-1976(19)30270-2 |
title_full |
Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm |
author_sort |
Son, Nguyen Ngoc |
journal |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
journalStr |
Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Son, Nguyen Ngoc |
container_volume |
87 |
class |
540 VZ 610 VZ 44.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Son, Nguyen Ngoc |
doi_str_mv |
10.1016/j.engappai.2019.103317 |
dewey-full |
540 610 |
title_sort |
parameters identification of bouc–wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and jaya algorithm |
title_auth |
Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm |
abstract |
The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. |
abstractGer |
The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. |
abstract_unstemmed |
The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm |
url |
https://doi.org/10.1016/j.engappai.2019.103317 |
remote_bool |
true |
author2 |
Van Kien, Cao Anh, Ho Pham Huy |
author2Str |
Van Kien, Cao Anh, Ho Pham Huy |
ppnlink |
ELV013402978 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.engappai.2019.103317 |
up_date |
2024-07-06T19:13:40.538Z |
_version_ |
1803858184019902464 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048578142</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626022305.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engappai.2019.103317</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048578142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0952-1976(19)30270-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Son, Nguyen Ngoc</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parameters identification of Bouc–Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The nonlinearities hysteresis of the piezoelectric-PZT actuator can greatly degrade in precise positioning applications. Therefore, modeling and identifying the hysteresis parameter of PZT actuator are still many challenges nowadays. In this paper, the hybrid adaptive differential evolution and Jaya algorithm (aDE-Jaya) is proposed to identify the Bouc–Wen hysteresis model of a piezoelectric actuator. In the aDE-Jaya algorithm, the improvement is focused on a hybrid mutant operator “DE/rand/1” and Jaya operator tried to balance between two contradictory aspects of their performance: exploration and exploitation and adaptive control parameters (mutant factor F, crossover rate CR, population size NP) to enhance the convergence efficiency. To prove the effectiveness and robustness of the proposed aDE-Jaya algorithm, it is tested on 8 benchmark functions and compared with other state-of-the-art optimizations. The comparison results show that aDE-Jaya has better performance in convergence rate and accuracy. After that, aDE-Jaya is applied to identify the Bouc–Wen hysteresis model based on experimental input–output data. The identified Bouc–Wen hysteresis resulted is used to design the feedforward controller to test accurate identification. As a consequent, the proposed aDE-Jaya algorithm can successfully identify the highly hysteretic nonlinearity of the piezoelectric actuator with perfect precision.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Jaya algorithm</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear hysteresis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Parameters identification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential evolution</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Piezoelectric actuator</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Kien, Cao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anh, Ho Pham Huy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Liu, Xiang ELSEVIER</subfield><subfield code="t">Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation</subfield><subfield code="d">2015</subfield><subfield code="d">the international journal of real-time automation : a journal affiliated with IFAC, the International Federation of Automatic Control</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013402978</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:87</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.engappai.2019.103317</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.00</subfield><subfield code="j">Medizin: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">87</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4011316 |