Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides
To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn...
Ausführliche Beschreibung
Autor*in: |
Ji, Yunsen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners - Fetters, Lisa ELSEVIER, 2021, EES : official journal of the International Society of Ecotoxicology and Environmental safety, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:188 ; year:2020 ; day:30 ; month:01 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.ecoenv.2019.109887 |
---|
Katalog-ID: |
ELV048652903 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV048652903 | ||
003 | DE-627 | ||
005 | 20230626022505.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200108s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ecoenv.2019.109887 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000826.pica |
035 | |a (DE-627)ELV048652903 | ||
035 | |a (ELSEVIER)S0147-6513(19)31218-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.63 |2 bkl | ||
100 | 1 | |a Ji, Yunsen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. | ||
520 | |a To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. | ||
650 | 7 | |a Removal mechanisms |2 Elsevier | |
650 | 7 | |a Adsorption |2 Elsevier | |
650 | 7 | |a High-throughput sequencing |2 Elsevier | |
650 | 7 | |a Cadmium removal |2 Elsevier | |
650 | 7 | |a Layered double hydroxides |2 Elsevier | |
700 | 1 | |a Zhang, Xiangling |4 oth | |
700 | 1 | |a Gao, Jingtian |4 oth | |
700 | 1 | |a Zhao, Shuangjie |4 oth | |
700 | 1 | |a Dou, Yankai |4 oth | |
700 | 1 | |a Xue, Yu |4 oth | |
700 | 1 | |a Chen, Lihong |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Fetters, Lisa ELSEVIER |t Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners |d 2021 |d EES : official journal of the International Society of Ecotoxicology and Environmental safety |g Amsterdam |w (DE-627)ELV006765629 |
773 | 1 | 8 | |g volume:188 |g year:2020 |g day:30 |g month:01 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ecoenv.2019.109887 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 44.63 |j Krankenpflege |q VZ |
951 | |a AR | ||
952 | |d 188 |j 2020 |b 30 |c 0130 |h 0 |
author_variant |
y j yj |
---|---|
matchkey_str |
jiyunsenzhangxianglinggaojingtianzhaoshu:2020----:fiinynmcaimocdimeoavaoehlzoien |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
44.63 |
publishDate |
2020 |
allfields |
10.1016/j.ecoenv.2019.109887 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000826.pica (DE-627)ELV048652903 (ELSEVIER)S0147-6513(19)31218-7 DE-627 ger DE-627 rakwb eng 610 VZ 44.63 bkl Ji, Yunsen verfasserin aut Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. Removal mechanisms Elsevier Adsorption Elsevier High-throughput sequencing Elsevier Cadmium removal Elsevier Layered double hydroxides Elsevier Zhang, Xiangling oth Gao, Jingtian oth Zhao, Shuangjie oth Dou, Yankai oth Xue, Yu oth Chen, Lihong oth Enthalten in Elsevier Fetters, Lisa ELSEVIER Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners 2021 EES : official journal of the International Society of Ecotoxicology and Environmental safety Amsterdam (DE-627)ELV006765629 volume:188 year:2020 day:30 month:01 pages:0 https://doi.org/10.1016/j.ecoenv.2019.109887 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.63 Krankenpflege VZ AR 188 2020 30 0130 0 |
spelling |
10.1016/j.ecoenv.2019.109887 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000826.pica (DE-627)ELV048652903 (ELSEVIER)S0147-6513(19)31218-7 DE-627 ger DE-627 rakwb eng 610 VZ 44.63 bkl Ji, Yunsen verfasserin aut Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. Removal mechanisms Elsevier Adsorption Elsevier High-throughput sequencing Elsevier Cadmium removal Elsevier Layered double hydroxides Elsevier Zhang, Xiangling oth Gao, Jingtian oth Zhao, Shuangjie oth Dou, Yankai oth Xue, Yu oth Chen, Lihong oth Enthalten in Elsevier Fetters, Lisa ELSEVIER Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners 2021 EES : official journal of the International Society of Ecotoxicology and Environmental safety Amsterdam (DE-627)ELV006765629 volume:188 year:2020 day:30 month:01 pages:0 https://doi.org/10.1016/j.ecoenv.2019.109887 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.63 Krankenpflege VZ AR 188 2020 30 0130 0 |
allfields_unstemmed |
10.1016/j.ecoenv.2019.109887 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000826.pica (DE-627)ELV048652903 (ELSEVIER)S0147-6513(19)31218-7 DE-627 ger DE-627 rakwb eng 610 VZ 44.63 bkl Ji, Yunsen verfasserin aut Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. Removal mechanisms Elsevier Adsorption Elsevier High-throughput sequencing Elsevier Cadmium removal Elsevier Layered double hydroxides Elsevier Zhang, Xiangling oth Gao, Jingtian oth Zhao, Shuangjie oth Dou, Yankai oth Xue, Yu oth Chen, Lihong oth Enthalten in Elsevier Fetters, Lisa ELSEVIER Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners 2021 EES : official journal of the International Society of Ecotoxicology and Environmental safety Amsterdam (DE-627)ELV006765629 volume:188 year:2020 day:30 month:01 pages:0 https://doi.org/10.1016/j.ecoenv.2019.109887 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.63 Krankenpflege VZ AR 188 2020 30 0130 0 |
allfieldsGer |
10.1016/j.ecoenv.2019.109887 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000826.pica (DE-627)ELV048652903 (ELSEVIER)S0147-6513(19)31218-7 DE-627 ger DE-627 rakwb eng 610 VZ 44.63 bkl Ji, Yunsen verfasserin aut Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. Removal mechanisms Elsevier Adsorption Elsevier High-throughput sequencing Elsevier Cadmium removal Elsevier Layered double hydroxides Elsevier Zhang, Xiangling oth Gao, Jingtian oth Zhao, Shuangjie oth Dou, Yankai oth Xue, Yu oth Chen, Lihong oth Enthalten in Elsevier Fetters, Lisa ELSEVIER Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners 2021 EES : official journal of the International Society of Ecotoxicology and Environmental safety Amsterdam (DE-627)ELV006765629 volume:188 year:2020 day:30 month:01 pages:0 https://doi.org/10.1016/j.ecoenv.2019.109887 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.63 Krankenpflege VZ AR 188 2020 30 0130 0 |
allfieldsSound |
10.1016/j.ecoenv.2019.109887 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000826.pica (DE-627)ELV048652903 (ELSEVIER)S0147-6513(19)31218-7 DE-627 ger DE-627 rakwb eng 610 VZ 44.63 bkl Ji, Yunsen verfasserin aut Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. Removal mechanisms Elsevier Adsorption Elsevier High-throughput sequencing Elsevier Cadmium removal Elsevier Layered double hydroxides Elsevier Zhang, Xiangling oth Gao, Jingtian oth Zhao, Shuangjie oth Dou, Yankai oth Xue, Yu oth Chen, Lihong oth Enthalten in Elsevier Fetters, Lisa ELSEVIER Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners 2021 EES : official journal of the International Society of Ecotoxicology and Environmental safety Amsterdam (DE-627)ELV006765629 volume:188 year:2020 day:30 month:01 pages:0 https://doi.org/10.1016/j.ecoenv.2019.109887 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 44.63 Krankenpflege VZ AR 188 2020 30 0130 0 |
language |
English |
source |
Enthalten in Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners Amsterdam volume:188 year:2020 day:30 month:01 pages:0 |
sourceStr |
Enthalten in Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners Amsterdam volume:188 year:2020 day:30 month:01 pages:0 |
format_phy_str_mv |
Article |
bklname |
Krankenpflege |
institution |
findex.gbv.de |
topic_facet |
Removal mechanisms Adsorption High-throughput sequencing Cadmium removal Layered double hydroxides |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners |
authorswithroles_txt_mv |
Ji, Yunsen @@aut@@ Zhang, Xiangling @@oth@@ Gao, Jingtian @@oth@@ Zhao, Shuangjie @@oth@@ Dou, Yankai @@oth@@ Xue, Yu @@oth@@ Chen, Lihong @@oth@@ |
publishDateDaySort_date |
2020-01-30T00:00:00Z |
hierarchy_top_id |
ELV006765629 |
dewey-sort |
3610 |
id |
ELV048652903 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048652903</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626022505.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecoenv.2019.109887</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000826.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048652903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0147-6513(19)31218-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.63</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ji, Yunsen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Removal mechanisms</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adsorption</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High-throughput sequencing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cadmium removal</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Layered double hydroxides</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiangling</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Jingtian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Shuangjie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dou, Yankai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Lihong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Fetters, Lisa ELSEVIER</subfield><subfield code="t">Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners</subfield><subfield code="d">2021</subfield><subfield code="d">EES : official journal of the International Society of Ecotoxicology and Environmental safety</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV006765629</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:188</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:30</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecoenv.2019.109887</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.63</subfield><subfield code="j">Krankenpflege</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">188</subfield><subfield code="j">2020</subfield><subfield code="b">30</subfield><subfield code="c">0130</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Ji, Yunsen |
spellingShingle |
Ji, Yunsen ddc 610 bkl 44.63 Elsevier Removal mechanisms Elsevier Adsorption Elsevier High-throughput sequencing Elsevier Cadmium removal Elsevier Layered double hydroxides Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides |
authorStr |
Ji, Yunsen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006765629 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.63 bkl Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides Removal mechanisms Elsevier Adsorption Elsevier High-throughput sequencing Elsevier Cadmium removal Elsevier Layered double hydroxides Elsevier |
topic |
ddc 610 bkl 44.63 Elsevier Removal mechanisms Elsevier Adsorption Elsevier High-throughput sequencing Elsevier Cadmium removal Elsevier Layered double hydroxides |
topic_unstemmed |
ddc 610 bkl 44.63 Elsevier Removal mechanisms Elsevier Adsorption Elsevier High-throughput sequencing Elsevier Cadmium removal Elsevier Layered double hydroxides |
topic_browse |
ddc 610 bkl 44.63 Elsevier Removal mechanisms Elsevier Adsorption Elsevier High-throughput sequencing Elsevier Cadmium removal Elsevier Layered double hydroxides |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x z xz j g jg s z sz y d yd y x yx l c lc |
hierarchy_parent_title |
Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners |
hierarchy_parent_id |
ELV006765629 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006765629 |
title |
Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides |
ctrlnum |
(DE-627)ELV048652903 (ELSEVIER)S0147-6513(19)31218-7 |
title_full |
Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides |
author_sort |
Ji, Yunsen |
journal |
Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners |
journalStr |
Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Ji, Yunsen |
container_volume |
188 |
class |
610 VZ 44.63 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ji, Yunsen |
doi_str_mv |
10.1016/j.ecoenv.2019.109887 |
dewey-full |
610 |
title_sort |
efficiency and mechanisms of cadmium removal via core-shell zeolite/zn-layer double hydroxides |
title_auth |
Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides |
abstract |
To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. |
abstractGer |
To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. |
abstract_unstemmed |
To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides |
url |
https://doi.org/10.1016/j.ecoenv.2019.109887 |
remote_bool |
true |
author2 |
Zhang, Xiangling Gao, Jingtian Zhao, Shuangjie Dou, Yankai Xue, Yu Chen, Lihong |
author2Str |
Zhang, Xiangling Gao, Jingtian Zhao, Shuangjie Dou, Yankai Xue, Yu Chen, Lihong |
ppnlink |
ELV006765629 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.ecoenv.2019.109887 |
up_date |
2024-07-06T19:26:03.651Z |
_version_ |
1803858963230359552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048652903</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626022505.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ecoenv.2019.109887</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000826.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048652903</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0147-6513(19)31218-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.63</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ji, Yunsen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficiency and mechanisms of cadmium removal via core-shell zeolite/Zn-layer double hydroxides</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg−1 and original zeolites was 434.783 mg kg−1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 μg/g) > ZnFe-LDHs-modified zeolites (71.85445 μg/g) > original zeolites (68.69904 μg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Removal mechanisms</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adsorption</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High-throughput sequencing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cadmium removal</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Layered double hydroxides</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiangling</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Jingtian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Shuangjie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dou, Yankai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xue, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Lihong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Fetters, Lisa ELSEVIER</subfield><subfield code="t">Erysipelas, the “Other” Cellulitis: A Practical Guide for Nurse Practitioners</subfield><subfield code="d">2021</subfield><subfield code="d">EES : official journal of the International Society of Ecotoxicology and Environmental safety</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV006765629</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:188</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:30</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ecoenv.2019.109887</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.63</subfield><subfield code="j">Krankenpflege</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">188</subfield><subfield code="j">2020</subfield><subfield code="b">30</subfield><subfield code="c">0130</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.399678 |