A real-time hybrid aeroelastic simulation platform for flexible wings
The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dyna...
Ausführliche Beschreibung
Autor*in: |
Su, Weihua [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience - Baysal, Birol ELSEVIER, 2015, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:95 ; year:2019 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.ast.2019.105513 |
---|
Katalog-ID: |
ELV04870458X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV04870458X | ||
003 | DE-627 | ||
005 | 20230626022611.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200108s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ast.2019.105513 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica |
035 | |a (DE-627)ELV04870458X | ||
035 | |a (ELSEVIER)S1270-9638(19)31986-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 600 |a 670 |q VZ |
084 | |a 51.00 |2 bkl | ||
100 | 1 | |a Su, Weihua |e verfasserin |4 aut | |
245 | 1 | 0 | |a A real-time hybrid aeroelastic simulation platform for flexible wings |
264 | 1 | |c 2019transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. | ||
520 | |a The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. | ||
650 | 7 | |a Real-time |2 Elsevier | |
650 | 7 | |a Flexible wing |2 Elsevier | |
650 | 7 | |a Aeroelastic behavior |2 Elsevier | |
650 | 7 | |a Hybrid simulation |2 Elsevier | |
700 | 1 | |a Song, Wei |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Baysal, Birol ELSEVIER |t Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience |d 2015 |g Amsterdam [u.a.] |w (DE-627)ELV013466232 |
773 | 1 | 8 | |g volume:95 |g year:2019 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ast.2019.105513 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_40 | ||
936 | b | k | |a 51.00 |j Werkstoffkunde: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 95 |j 2019 |h 0 |
author_variant |
w s ws |
---|---|
matchkey_str |
suweihuasongwei:2019----:ratmhbiareatciuainltom |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
51.00 |
publishDate |
2019 |
allfields |
10.1016/j.ast.2019.105513 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV04870458X (ELSEVIER)S1270-9638(19)31986-8 DE-627 ger DE-627 rakwb eng 610 VZ 600 670 VZ 51.00 bkl Su, Weihua verfasserin aut A real-time hybrid aeroelastic simulation platform for flexible wings 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. Real-time Elsevier Flexible wing Elsevier Aeroelastic behavior Elsevier Hybrid simulation Elsevier Song, Wei oth Enthalten in Elsevier Science Baysal, Birol ELSEVIER Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience 2015 Amsterdam [u.a.] (DE-627)ELV013466232 volume:95 year:2019 pages:0 https://doi.org/10.1016/j.ast.2019.105513 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 95 2019 0 |
spelling |
10.1016/j.ast.2019.105513 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV04870458X (ELSEVIER)S1270-9638(19)31986-8 DE-627 ger DE-627 rakwb eng 610 VZ 600 670 VZ 51.00 bkl Su, Weihua verfasserin aut A real-time hybrid aeroelastic simulation platform for flexible wings 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. Real-time Elsevier Flexible wing Elsevier Aeroelastic behavior Elsevier Hybrid simulation Elsevier Song, Wei oth Enthalten in Elsevier Science Baysal, Birol ELSEVIER Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience 2015 Amsterdam [u.a.] (DE-627)ELV013466232 volume:95 year:2019 pages:0 https://doi.org/10.1016/j.ast.2019.105513 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 95 2019 0 |
allfields_unstemmed |
10.1016/j.ast.2019.105513 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV04870458X (ELSEVIER)S1270-9638(19)31986-8 DE-627 ger DE-627 rakwb eng 610 VZ 600 670 VZ 51.00 bkl Su, Weihua verfasserin aut A real-time hybrid aeroelastic simulation platform for flexible wings 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. Real-time Elsevier Flexible wing Elsevier Aeroelastic behavior Elsevier Hybrid simulation Elsevier Song, Wei oth Enthalten in Elsevier Science Baysal, Birol ELSEVIER Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience 2015 Amsterdam [u.a.] (DE-627)ELV013466232 volume:95 year:2019 pages:0 https://doi.org/10.1016/j.ast.2019.105513 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 95 2019 0 |
allfieldsGer |
10.1016/j.ast.2019.105513 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV04870458X (ELSEVIER)S1270-9638(19)31986-8 DE-627 ger DE-627 rakwb eng 610 VZ 600 670 VZ 51.00 bkl Su, Weihua verfasserin aut A real-time hybrid aeroelastic simulation platform for flexible wings 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. Real-time Elsevier Flexible wing Elsevier Aeroelastic behavior Elsevier Hybrid simulation Elsevier Song, Wei oth Enthalten in Elsevier Science Baysal, Birol ELSEVIER Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience 2015 Amsterdam [u.a.] (DE-627)ELV013466232 volume:95 year:2019 pages:0 https://doi.org/10.1016/j.ast.2019.105513 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 95 2019 0 |
allfieldsSound |
10.1016/j.ast.2019.105513 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica (DE-627)ELV04870458X (ELSEVIER)S1270-9638(19)31986-8 DE-627 ger DE-627 rakwb eng 610 VZ 600 670 VZ 51.00 bkl Su, Weihua verfasserin aut A real-time hybrid aeroelastic simulation platform for flexible wings 2019transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. Real-time Elsevier Flexible wing Elsevier Aeroelastic behavior Elsevier Hybrid simulation Elsevier Song, Wei oth Enthalten in Elsevier Science Baysal, Birol ELSEVIER Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience 2015 Amsterdam [u.a.] (DE-627)ELV013466232 volume:95 year:2019 pages:0 https://doi.org/10.1016/j.ast.2019.105513 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 51.00 Werkstoffkunde: Allgemeines VZ AR 95 2019 0 |
language |
English |
source |
Enthalten in Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience Amsterdam [u.a.] volume:95 year:2019 pages:0 |
sourceStr |
Enthalten in Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience Amsterdam [u.a.] volume:95 year:2019 pages:0 |
format_phy_str_mv |
Article |
bklname |
Werkstoffkunde: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Real-time Flexible wing Aeroelastic behavior Hybrid simulation |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience |
authorswithroles_txt_mv |
Su, Weihua @@aut@@ Song, Wei @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV013466232 |
dewey-sort |
3610 |
id |
ELV04870458X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV04870458X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626022611.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ast.2019.105513</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV04870458X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1270-9638(19)31986-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Su, Weihua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A real-time hybrid aeroelastic simulation platform for flexible wings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Real-time</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Flexible wing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Aeroelastic behavior</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hybrid simulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Baysal, Birol ELSEVIER</subfield><subfield code="t">Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience</subfield><subfield code="d">2015</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013466232</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:95</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ast.2019.105513</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">95</subfield><subfield code="j">2019</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Su, Weihua |
spellingShingle |
Su, Weihua ddc 610 ddc 600 bkl 51.00 Elsevier Real-time Elsevier Flexible wing Elsevier Aeroelastic behavior Elsevier Hybrid simulation A real-time hybrid aeroelastic simulation platform for flexible wings |
authorStr |
Su, Weihua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV013466232 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 600 - Technology 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 600 670 VZ 51.00 bkl A real-time hybrid aeroelastic simulation platform for flexible wings Real-time Elsevier Flexible wing Elsevier Aeroelastic behavior Elsevier Hybrid simulation Elsevier |
topic |
ddc 610 ddc 600 bkl 51.00 Elsevier Real-time Elsevier Flexible wing Elsevier Aeroelastic behavior Elsevier Hybrid simulation |
topic_unstemmed |
ddc 610 ddc 600 bkl 51.00 Elsevier Real-time Elsevier Flexible wing Elsevier Aeroelastic behavior Elsevier Hybrid simulation |
topic_browse |
ddc 610 ddc 600 bkl 51.00 Elsevier Real-time Elsevier Flexible wing Elsevier Aeroelastic behavior Elsevier Hybrid simulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
w s ws |
hierarchy_parent_title |
Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience |
hierarchy_parent_id |
ELV013466232 |
dewey-tens |
610 - Medicine & health 600 - Technology 670 - Manufacturing |
hierarchy_top_title |
Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV013466232 |
title |
A real-time hybrid aeroelastic simulation platform for flexible wings |
ctrlnum |
(DE-627)ELV04870458X (ELSEVIER)S1270-9638(19)31986-8 |
title_full |
A real-time hybrid aeroelastic simulation platform for flexible wings |
author_sort |
Su, Weihua |
journal |
Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience |
journalStr |
Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Su, Weihua |
container_volume |
95 |
class |
610 VZ 600 670 VZ 51.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Su, Weihua |
doi_str_mv |
10.1016/j.ast.2019.105513 |
dewey-full |
610 600 670 |
title_sort |
a real-time hybrid aeroelastic simulation platform for flexible wings |
title_auth |
A real-time hybrid aeroelastic simulation platform for flexible wings |
abstract |
The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. |
abstractGer |
The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. |
abstract_unstemmed |
The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_40 |
title_short |
A real-time hybrid aeroelastic simulation platform for flexible wings |
url |
https://doi.org/10.1016/j.ast.2019.105513 |
remote_bool |
true |
author2 |
Song, Wei |
author2Str |
Song, Wei |
ppnlink |
ELV013466232 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.ast.2019.105513 |
up_date |
2024-07-06T19:34:19.175Z |
_version_ |
1803859482824933376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV04870458X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626022611.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ast.2019.105513</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000831.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV04870458X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1270-9638(19)31986-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Su, Weihua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A real-time hybrid aeroelastic simulation platform for flexible wings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The concept of real-time hybrid aeroelastic simulation for flexible wings is introduced in this paper. In a hybrid aeroelastic simulation, a coupled aeroelastic system is “broken down” into an aerodynamic simulation subsystem and a structural vibration subsystem. The coupling between structural dynamics and aerodynamics is maintained by the real-time communication between the two subsystems. As the vibration of the testing article (a wing member or a full aircraft) is actuated by actuators, hybrid aeroelastic simulation and experiment can eliminate the sizing constraint of the conventional aeroelastic testing performed within a wind-tunnel. It also significantly saves the cost of wind-tunnel testing. However, several critical technical problems (such as process noise, measurement noise, and actuator delay) need to be addressed to enable a hybrid simulation in real-time. This paper proves the concept of real-time hybrid simulation and discusses some of the critical problems underlying the technique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Real-time</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Flexible wing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Aeroelastic behavior</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hybrid simulation</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Baysal, Birol ELSEVIER</subfield><subfield code="t">Mo1474 The Role of EUS Examination and EUS-Guided Fine Needle Aspiration Biopsy for Evaluation of Gastric Subepithelial Lesions: a Large Single Center Experience</subfield><subfield code="d">2015</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV013466232</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:95</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ast.2019.105513</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.00</subfield><subfield code="j">Werkstoffkunde: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">95</subfield><subfield code="j">2019</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401045 |