Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model
In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not consider...
Ausführliche Beschreibung
Autor*in: |
Hwang, In Sik [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019transfer abstract |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Role of sulfur in combating arsenic stress through upregulation of important proteins, and - Amna, Syeda ELSEVIER, 2020, an international journal on the science and technology of wet and dry particulate systems, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:356 ; year:2019 ; pages:129-138 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.powtec.2019.08.008 |
---|
Katalog-ID: |
ELV048768219 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV048768219 | ||
003 | DE-627 | ||
005 | 20230626022743.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200108s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.powtec.2019.08.008 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000838.pica |
035 | |a (DE-627)ELV048768219 | ||
035 | |a (ELSEVIER)S0032-5910(19)30607-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |a 580 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 42.00 |2 bkl | ||
100 | 1 | |a Hwang, In Sik |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model |
264 | 1 | |c 2019transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. | ||
520 | |a In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. | ||
700 | 1 | |a Jeong, Hyo Jae |4 oth | |
700 | 1 | |a Hwang, Jungho |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Amna, Syeda ELSEVIER |t Role of sulfur in combating arsenic stress through upregulation of important proteins, and |d 2020 |d an international journal on the science and technology of wet and dry particulate systems |g Amsterdam [u.a.] |w (DE-627)ELV005093252 |
773 | 1 | 8 | |g volume:356 |g year:2019 |g pages:129-138 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.powtec.2019.08.008 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
936 | b | k | |a 42.00 |j Biologie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 356 |j 2019 |h 129-138 |g 10 |
author_variant |
i s h is ish |
---|---|
matchkey_str |
hwanginsikjeonghyojaehwangjungho:2019----:ueiasmltooaesfoccoesnteieiterogauafo |
hierarchy_sort_str |
2019transfer abstract |
bklnumber |
42.00 |
publishDate |
2019 |
allfields |
10.1016/j.powtec.2019.08.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000838.pica (DE-627)ELV048768219 (ELSEVIER)S0032-5910(19)30607-2 DE-627 ger DE-627 rakwb eng 630 640 580 VZ BIODIV DE-30 fid 42.00 bkl Hwang, In Sik verfasserin aut Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. Jeong, Hyo Jae oth Hwang, Jungho oth Enthalten in Elsevier Science Amna, Syeda ELSEVIER Role of sulfur in combating arsenic stress through upregulation of important proteins, and 2020 an international journal on the science and technology of wet and dry particulate systems Amsterdam [u.a.] (DE-627)ELV005093252 volume:356 year:2019 pages:129-138 extent:10 https://doi.org/10.1016/j.powtec.2019.08.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV 42.00 Biologie: Allgemeines VZ AR 356 2019 129-138 10 |
spelling |
10.1016/j.powtec.2019.08.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000838.pica (DE-627)ELV048768219 (ELSEVIER)S0032-5910(19)30607-2 DE-627 ger DE-627 rakwb eng 630 640 580 VZ BIODIV DE-30 fid 42.00 bkl Hwang, In Sik verfasserin aut Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. Jeong, Hyo Jae oth Hwang, Jungho oth Enthalten in Elsevier Science Amna, Syeda ELSEVIER Role of sulfur in combating arsenic stress through upregulation of important proteins, and 2020 an international journal on the science and technology of wet and dry particulate systems Amsterdam [u.a.] (DE-627)ELV005093252 volume:356 year:2019 pages:129-138 extent:10 https://doi.org/10.1016/j.powtec.2019.08.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV 42.00 Biologie: Allgemeines VZ AR 356 2019 129-138 10 |
allfields_unstemmed |
10.1016/j.powtec.2019.08.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000838.pica (DE-627)ELV048768219 (ELSEVIER)S0032-5910(19)30607-2 DE-627 ger DE-627 rakwb eng 630 640 580 VZ BIODIV DE-30 fid 42.00 bkl Hwang, In Sik verfasserin aut Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. Jeong, Hyo Jae oth Hwang, Jungho oth Enthalten in Elsevier Science Amna, Syeda ELSEVIER Role of sulfur in combating arsenic stress through upregulation of important proteins, and 2020 an international journal on the science and technology of wet and dry particulate systems Amsterdam [u.a.] (DE-627)ELV005093252 volume:356 year:2019 pages:129-138 extent:10 https://doi.org/10.1016/j.powtec.2019.08.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV 42.00 Biologie: Allgemeines VZ AR 356 2019 129-138 10 |
allfieldsGer |
10.1016/j.powtec.2019.08.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000838.pica (DE-627)ELV048768219 (ELSEVIER)S0032-5910(19)30607-2 DE-627 ger DE-627 rakwb eng 630 640 580 VZ BIODIV DE-30 fid 42.00 bkl Hwang, In Sik verfasserin aut Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. Jeong, Hyo Jae oth Hwang, Jungho oth Enthalten in Elsevier Science Amna, Syeda ELSEVIER Role of sulfur in combating arsenic stress through upregulation of important proteins, and 2020 an international journal on the science and technology of wet and dry particulate systems Amsterdam [u.a.] (DE-627)ELV005093252 volume:356 year:2019 pages:129-138 extent:10 https://doi.org/10.1016/j.powtec.2019.08.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV 42.00 Biologie: Allgemeines VZ AR 356 2019 129-138 10 |
allfieldsSound |
10.1016/j.powtec.2019.08.008 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000838.pica (DE-627)ELV048768219 (ELSEVIER)S0032-5910(19)30607-2 DE-627 ger DE-627 rakwb eng 630 640 580 VZ BIODIV DE-30 fid 42.00 bkl Hwang, In Sik verfasserin aut Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model 2019transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. Jeong, Hyo Jae oth Hwang, Jungho oth Enthalten in Elsevier Science Amna, Syeda ELSEVIER Role of sulfur in combating arsenic stress through upregulation of important proteins, and 2020 an international journal on the science and technology of wet and dry particulate systems Amsterdam [u.a.] (DE-627)ELV005093252 volume:356 year:2019 pages:129-138 extent:10 https://doi.org/10.1016/j.powtec.2019.08.008 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV 42.00 Biologie: Allgemeines VZ AR 356 2019 129-138 10 |
language |
English |
source |
Enthalten in Role of sulfur in combating arsenic stress through upregulation of important proteins, and Amsterdam [u.a.] volume:356 year:2019 pages:129-138 extent:10 |
sourceStr |
Enthalten in Role of sulfur in combating arsenic stress through upregulation of important proteins, and Amsterdam [u.a.] volume:356 year:2019 pages:129-138 extent:10 |
format_phy_str_mv |
Article |
bklname |
Biologie: Allgemeines |
institution |
findex.gbv.de |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Role of sulfur in combating arsenic stress through upregulation of important proteins, and |
authorswithroles_txt_mv |
Hwang, In Sik @@aut@@ Jeong, Hyo Jae @@oth@@ Hwang, Jungho @@oth@@ |
publishDateDaySort_date |
2019-01-01T00:00:00Z |
hierarchy_top_id |
ELV005093252 |
dewey-sort |
3630 |
id |
ELV048768219 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048768219</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626022743.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.powtec.2019.08.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000838.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048768219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0032-5910(19)30607-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hwang, In Sik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jeong, Hyo Jae</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hwang, Jungho</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Amna, Syeda ELSEVIER</subfield><subfield code="t">Role of sulfur in combating arsenic stress through upregulation of important proteins, and</subfield><subfield code="d">2020</subfield><subfield code="d">an international journal on the science and technology of wet and dry particulate systems</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV005093252</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:356</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:129-138</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.powtec.2019.08.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="j">Biologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">356</subfield><subfield code="j">2019</subfield><subfield code="h">129-138</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
author |
Hwang, In Sik |
spellingShingle |
Hwang, In Sik ddc 630 fid BIODIV bkl 42.00 Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model |
authorStr |
Hwang, In Sik |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV005093252 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management 580 - Plants (Botany) |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
630 640 580 VZ BIODIV DE-30 fid 42.00 bkl Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model |
topic |
ddc 630 fid BIODIV bkl 42.00 |
topic_unstemmed |
ddc 630 fid BIODIV bkl 42.00 |
topic_browse |
ddc 630 fid BIODIV bkl 42.00 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h j j hj hjj j h jh |
hierarchy_parent_title |
Role of sulfur in combating arsenic stress through upregulation of important proteins, and |
hierarchy_parent_id |
ELV005093252 |
dewey-tens |
630 - Agriculture 640 - Home & family management 580 - Plants (Botany) |
hierarchy_top_title |
Role of sulfur in combating arsenic stress through upregulation of important proteins, and |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV005093252 |
title |
Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model |
ctrlnum |
(DE-627)ELV048768219 (ELSEVIER)S0032-5910(19)30607-2 |
title_full |
Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model |
author_sort |
Hwang, In Sik |
journal |
Role of sulfur in combating arsenic stress through upregulation of important proteins, and |
journalStr |
Role of sulfur in combating arsenic stress through upregulation of important proteins, and |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
zzz |
container_start_page |
129 |
author_browse |
Hwang, In Sik |
container_volume |
356 |
physical |
10 |
class |
630 640 580 VZ BIODIV DE-30 fid 42.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hwang, In Sik |
doi_str_mv |
10.1016/j.powtec.2019.08.008 |
dewey-full |
630 640 580 |
title_sort |
numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model |
title_auth |
Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model |
abstract |
In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. |
abstractGer |
In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. |
abstract_unstemmed |
In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV |
title_short |
Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model |
url |
https://doi.org/10.1016/j.powtec.2019.08.008 |
remote_bool |
true |
author2 |
Jeong, Hyo Jae Hwang, Jungho |
author2Str |
Jeong, Hyo Jae Hwang, Jungho |
ppnlink |
ELV005093252 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.powtec.2019.08.008 |
up_date |
2024-07-06T19:44:40.880Z |
_version_ |
1803860134729875456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048768219</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626022743.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.powtec.2019.08.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000838.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048768219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0032-5910(19)30607-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">580</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hwang, In Sik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulation of a dense flow cyclone using the kinetic theory of granular flow in a dense discrete phase model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, the dense flow characteristics in a Lapple cyclone were investigated using numerical simulations. At a high solid volume fraction, four-way coupling must be applied to account for solid volume fraction in Navier-Stokes equations and particle-particle collisions, which are not considered in one- and two-way couplings approaches. A four-way coupling method, the dense discrete phase model (DDPM), which accounts for the solid volume fraction, was used in this study. The kinetic theory of granular flow (KTGF) in the DDPM was utilized to compute particle-particle interactions. The calculated results obtained using DDPM-KTGF were validated using experimental results reported previously. These results were compared with numerical data obtained from the discrete element model (DEM), which is another four-way coupling method. DDPM-KTGF could be successfully applied to situations involving high solid volume fractions with a significantly lower computational time than that required for DEM.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jeong, Hyo Jae</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hwang, Jungho</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Amna, Syeda ELSEVIER</subfield><subfield code="t">Role of sulfur in combating arsenic stress through upregulation of important proteins, and</subfield><subfield code="d">2020</subfield><subfield code="d">an international journal on the science and technology of wet and dry particulate systems</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV005093252</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:356</subfield><subfield code="g">year:2019</subfield><subfield code="g">pages:129-138</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.powtec.2019.08.008</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.00</subfield><subfield code="j">Biologie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">356</subfield><subfield code="j">2019</subfield><subfield code="h">129-138</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
score |
7.4013624 |