Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China
The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burni...
Ausführliche Beschreibung
Autor*in: |
Luo, Jinqi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
12 |
---|
Übergeordnetes Werk: |
Enthalten in: The development of a computational platform to design and simulate on-board hydrogen storage systems - Mazzucco, Andrea ELSEVIER, 2017transfer abstract, [Amsterdam] |
---|---|
Übergeordnetes Werk: |
volume:89 ; year:2020 ; pages:35-46 ; extent:12 |
Links: |
---|
DOI / URN: |
10.1016/j.jes.2019.09.015 |
---|
Katalog-ID: |
ELV048939951 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV048939951 | ||
003 | DE-627 | ||
005 | 20230626023119.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200108s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jes.2019.09.015 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000857.pica |
035 | |a (DE-627)ELV048939951 | ||
035 | |a (ELSEVIER)S1001-0742(19)31265-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
082 | 0 | 4 | |a 620 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.94 |2 bkl | ||
100 | 1 | |a Luo, Jinqi |e verfasserin |4 aut | |
245 | 1 | 0 | |a Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China |
264 | 1 | |c 2020transfer abstract | |
300 | |a 12 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. | ||
520 | |a The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. | ||
650 | 7 | |a Sichuan basin |2 Elsevier | |
650 | 7 | |a Evolution |2 Elsevier | |
650 | 7 | |a Single particles |2 Elsevier | |
650 | 7 | |a Biomass burning particles |2 Elsevier | |
650 | 7 | |a Regional differences |2 Elsevier | |
700 | 1 | |a Zhang, Junke |4 oth | |
700 | 1 | |a Huang, Xiaojuan |4 oth | |
700 | 1 | |a Liu, Qin |4 oth | |
700 | 1 | |a Luo, Bin |4 oth | |
700 | 1 | |a Zhang, Wei |4 oth | |
700 | 1 | |a Rao, Zhihan |4 oth | |
700 | 1 | |a Yu, Yangchun |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Mazzucco, Andrea ELSEVIER |t The development of a computational platform to design and simulate on-board hydrogen storage systems |d 2017transfer abstract |g [Amsterdam] |w (DE-627)ELV015065863 |
773 | 1 | 8 | |g volume:89 |g year:2020 |g pages:35-46 |g extent:12 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jes.2019.09.015 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_252 | ||
936 | b | k | |a 44.94 |j Hals-Nasen-Ohrenheilkunde |q VZ |
951 | |a AR | ||
952 | |d 89 |j 2020 |h 35-46 |g 12 |
author_variant |
j l jl |
---|---|
matchkey_str |
luojinqizhangjunkehuangxiaojuanliuqinluo:2020----:hrceitceouinnrgoadfeecsfimsbrigatc |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
44.94 |
publishDate |
2020 |
allfields |
10.1016/j.jes.2019.09.015 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000857.pica (DE-627)ELV048939951 (ELSEVIER)S1001-0742(19)31265-3 DE-627 ger DE-627 rakwb eng 660 VZ 620 VZ 610 VZ 44.94 bkl Luo, Jinqi verfasserin aut Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China 2020transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. Sichuan basin Elsevier Evolution Elsevier Single particles Elsevier Biomass burning particles Elsevier Regional differences Elsevier Zhang, Junke oth Huang, Xiaojuan oth Liu, Qin oth Luo, Bin oth Zhang, Wei oth Rao, Zhihan oth Yu, Yangchun oth Enthalten in Elsevier Mazzucco, Andrea ELSEVIER The development of a computational platform to design and simulate on-board hydrogen storage systems 2017transfer abstract [Amsterdam] (DE-627)ELV015065863 volume:89 year:2020 pages:35-46 extent:12 https://doi.org/10.1016/j.jes.2019.09.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 89 2020 35-46 12 |
spelling |
10.1016/j.jes.2019.09.015 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000857.pica (DE-627)ELV048939951 (ELSEVIER)S1001-0742(19)31265-3 DE-627 ger DE-627 rakwb eng 660 VZ 620 VZ 610 VZ 44.94 bkl Luo, Jinqi verfasserin aut Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China 2020transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. Sichuan basin Elsevier Evolution Elsevier Single particles Elsevier Biomass burning particles Elsevier Regional differences Elsevier Zhang, Junke oth Huang, Xiaojuan oth Liu, Qin oth Luo, Bin oth Zhang, Wei oth Rao, Zhihan oth Yu, Yangchun oth Enthalten in Elsevier Mazzucco, Andrea ELSEVIER The development of a computational platform to design and simulate on-board hydrogen storage systems 2017transfer abstract [Amsterdam] (DE-627)ELV015065863 volume:89 year:2020 pages:35-46 extent:12 https://doi.org/10.1016/j.jes.2019.09.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 89 2020 35-46 12 |
allfields_unstemmed |
10.1016/j.jes.2019.09.015 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000857.pica (DE-627)ELV048939951 (ELSEVIER)S1001-0742(19)31265-3 DE-627 ger DE-627 rakwb eng 660 VZ 620 VZ 610 VZ 44.94 bkl Luo, Jinqi verfasserin aut Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China 2020transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. Sichuan basin Elsevier Evolution Elsevier Single particles Elsevier Biomass burning particles Elsevier Regional differences Elsevier Zhang, Junke oth Huang, Xiaojuan oth Liu, Qin oth Luo, Bin oth Zhang, Wei oth Rao, Zhihan oth Yu, Yangchun oth Enthalten in Elsevier Mazzucco, Andrea ELSEVIER The development of a computational platform to design and simulate on-board hydrogen storage systems 2017transfer abstract [Amsterdam] (DE-627)ELV015065863 volume:89 year:2020 pages:35-46 extent:12 https://doi.org/10.1016/j.jes.2019.09.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 89 2020 35-46 12 |
allfieldsGer |
10.1016/j.jes.2019.09.015 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000857.pica (DE-627)ELV048939951 (ELSEVIER)S1001-0742(19)31265-3 DE-627 ger DE-627 rakwb eng 660 VZ 620 VZ 610 VZ 44.94 bkl Luo, Jinqi verfasserin aut Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China 2020transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. Sichuan basin Elsevier Evolution Elsevier Single particles Elsevier Biomass burning particles Elsevier Regional differences Elsevier Zhang, Junke oth Huang, Xiaojuan oth Liu, Qin oth Luo, Bin oth Zhang, Wei oth Rao, Zhihan oth Yu, Yangchun oth Enthalten in Elsevier Mazzucco, Andrea ELSEVIER The development of a computational platform to design and simulate on-board hydrogen storage systems 2017transfer abstract [Amsterdam] (DE-627)ELV015065863 volume:89 year:2020 pages:35-46 extent:12 https://doi.org/10.1016/j.jes.2019.09.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 89 2020 35-46 12 |
allfieldsSound |
10.1016/j.jes.2019.09.015 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000857.pica (DE-627)ELV048939951 (ELSEVIER)S1001-0742(19)31265-3 DE-627 ger DE-627 rakwb eng 660 VZ 620 VZ 610 VZ 44.94 bkl Luo, Jinqi verfasserin aut Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China 2020transfer abstract 12 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. Sichuan basin Elsevier Evolution Elsevier Single particles Elsevier Biomass burning particles Elsevier Regional differences Elsevier Zhang, Junke oth Huang, Xiaojuan oth Liu, Qin oth Luo, Bin oth Zhang, Wei oth Rao, Zhihan oth Yu, Yangchun oth Enthalten in Elsevier Mazzucco, Andrea ELSEVIER The development of a computational platform to design and simulate on-board hydrogen storage systems 2017transfer abstract [Amsterdam] (DE-627)ELV015065863 volume:89 year:2020 pages:35-46 extent:12 https://doi.org/10.1016/j.jes.2019.09.015 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 44.94 Hals-Nasen-Ohrenheilkunde VZ AR 89 2020 35-46 12 |
language |
English |
source |
Enthalten in The development of a computational platform to design and simulate on-board hydrogen storage systems [Amsterdam] volume:89 year:2020 pages:35-46 extent:12 |
sourceStr |
Enthalten in The development of a computational platform to design and simulate on-board hydrogen storage systems [Amsterdam] volume:89 year:2020 pages:35-46 extent:12 |
format_phy_str_mv |
Article |
bklname |
Hals-Nasen-Ohrenheilkunde |
institution |
findex.gbv.de |
topic_facet |
Sichuan basin Evolution Single particles Biomass burning particles Regional differences |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
The development of a computational platform to design and simulate on-board hydrogen storage systems |
authorswithroles_txt_mv |
Luo, Jinqi @@aut@@ Zhang, Junke @@oth@@ Huang, Xiaojuan @@oth@@ Liu, Qin @@oth@@ Luo, Bin @@oth@@ Zhang, Wei @@oth@@ Rao, Zhihan @@oth@@ Yu, Yangchun @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV015065863 |
dewey-sort |
3660 |
id |
ELV048939951 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048939951</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626023119.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jes.2019.09.015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000857.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048939951</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1001-0742(19)31265-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Luo, Jinqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sichuan basin</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evolution</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Single particles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biomass burning particles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regional differences</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Junke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Xiaojuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Qin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Bin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rao, Zhihan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yangchun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Mazzucco, Andrea ELSEVIER</subfield><subfield code="t">The development of a computational platform to design and simulate on-board hydrogen storage systems</subfield><subfield code="d">2017transfer abstract</subfield><subfield code="g">[Amsterdam]</subfield><subfield code="w">(DE-627)ELV015065863</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:35-46</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jes.2019.09.015</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2020</subfield><subfield code="h">35-46</subfield><subfield code="g">12</subfield></datafield></record></collection>
|
author |
Luo, Jinqi |
spellingShingle |
Luo, Jinqi ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Sichuan basin Elsevier Evolution Elsevier Single particles Elsevier Biomass burning particles Elsevier Regional differences Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China |
authorStr |
Luo, Jinqi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV015065863 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 620 - Engineering & allied operations 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 VZ 620 VZ 610 VZ 44.94 bkl Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China Sichuan basin Elsevier Evolution Elsevier Single particles Elsevier Biomass burning particles Elsevier Regional differences Elsevier |
topic |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Sichuan basin Elsevier Evolution Elsevier Single particles Elsevier Biomass burning particles Elsevier Regional differences |
topic_unstemmed |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Sichuan basin Elsevier Evolution Elsevier Single particles Elsevier Biomass burning particles Elsevier Regional differences |
topic_browse |
ddc 660 ddc 620 ddc 610 bkl 44.94 Elsevier Sichuan basin Elsevier Evolution Elsevier Single particles Elsevier Biomass burning particles Elsevier Regional differences |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j z jz x h xh q l ql b l bl w z wz z r zr y y yy |
hierarchy_parent_title |
The development of a computational platform to design and simulate on-board hydrogen storage systems |
hierarchy_parent_id |
ELV015065863 |
dewey-tens |
660 - Chemical engineering 620 - Engineering 610 - Medicine & health |
hierarchy_top_title |
The development of a computational platform to design and simulate on-board hydrogen storage systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV015065863 |
title |
Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China |
ctrlnum |
(DE-627)ELV048939951 (ELSEVIER)S1001-0742(19)31265-3 |
title_full |
Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China |
author_sort |
Luo, Jinqi |
journal |
The development of a computational platform to design and simulate on-board hydrogen storage systems |
journalStr |
The development of a computational platform to design and simulate on-board hydrogen storage systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
35 |
author_browse |
Luo, Jinqi |
container_volume |
89 |
physical |
12 |
class |
660 VZ 620 VZ 610 VZ 44.94 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Luo, Jinqi |
doi_str_mv |
10.1016/j.jes.2019.09.015 |
dewey-full |
660 620 610 |
title_sort |
characteristics, evolution, and regional differences of biomass burning particles in the sichuan basin, china |
title_auth |
Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China |
abstract |
The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. |
abstractGer |
The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. |
abstract_unstemmed |
The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_40 GBV_ILN_70 GBV_ILN_252 |
title_short |
Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China |
url |
https://doi.org/10.1016/j.jes.2019.09.015 |
remote_bool |
true |
author2 |
Zhang, Junke Huang, Xiaojuan Liu, Qin Luo, Bin Zhang, Wei Rao, Zhihan Yu, Yangchun |
author2Str |
Zhang, Junke Huang, Xiaojuan Liu, Qin Luo, Bin Zhang, Wei Rao, Zhihan Yu, Yangchun |
ppnlink |
ELV015065863 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.jes.2019.09.015 |
up_date |
2024-07-06T20:11:59.048Z |
_version_ |
1803861852473524224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV048939951</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626023119.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200108s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jes.2019.09.015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000857.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV048939951</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1001-0742(19)31265-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.94</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Luo, Jinqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characteristics, evolution, and regional differences of biomass burning particles in the Sichuan Basin, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Sichuan Basin has experienced serious air pollution from fine particulate matter (PM2.5) in the past few years with biomass burning has been identified as a major source of PM2.5 in this region. We used single particle aerosol mass spectrometer to investigate the characteristics of biomass burning particles in three interacting cities representing different types of urban environment in the Sichuan Basin. A total of 739,794, 279,610, and 380,636 biomass burning particles were detected at Ya'an, Guang'an, and Chengdu, which represented 42%, 69%, and 61%, respectively, of the total number of particles. We analyzed the chemical composition, transportation, and evolution of biomass burning particles. The contribution of K-elemental carbon and K-secondary inorganic particles was highest in Ya'an (36%) and Guang'an (47%), respectively, reflecting the important role of fresh biomass burning particles and long-distance transport in these two cities. Air masses originating from different directions corresponded to different levels of PM2.5 and the contributions of polluted clusters increased significantly on polluted days. Fresh and secondary inorganic biomass burning particles increased pollution at Ya'an and Guang'an, respectively, but dominated different stages of pollution in Chengdu. K-nitrate particles were formed by photochemical reactions, whereas K-sulfate particles were formed by both photochemical and liquid-phase reactions. Investigation of the degree of particle aging showed that there were more fresh particles at Ya'an and more aged particles at Guang'an. These results are useful in helping our understanding of the characteristics of biomass burning particles and evaluating their role in PM2.5 pollution in the Sichuan Basin.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sichuan basin</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evolution</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Single particles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biomass burning particles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Regional differences</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Junke</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Xiaojuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Qin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Bin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rao, Zhihan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yangchun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Mazzucco, Andrea ELSEVIER</subfield><subfield code="t">The development of a computational platform to design and simulate on-board hydrogen storage systems</subfield><subfield code="d">2017transfer abstract</subfield><subfield code="g">[Amsterdam]</subfield><subfield code="w">(DE-627)ELV015065863</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:89</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:35-46</subfield><subfield code="g">extent:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jes.2019.09.015</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.94</subfield><subfield code="j">Hals-Nasen-Ohrenheilkunde</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">89</subfield><subfield code="j">2020</subfield><subfield code="h">35-46</subfield><subfield code="g">12</subfield></datafield></record></collection>
|
score |
7.4010105 |