Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils
The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd...
Ausführliche Beschreibung
Autor*in: |
Lin, Zhongbing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading - Li, Zhaochao ELSEVIER, 2019, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:257 ; year:2020 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.envpol.2019.113602 |
---|
Katalog-ID: |
ELV04906875X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV04906875X | ||
003 | DE-627 | ||
005 | 20230626023438.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200128s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.envpol.2019.113602 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000876.pica |
035 | |a (DE-627)ELV04906875X | ||
035 | |a (ELSEVIER)S0269-7491(19)33857-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.31 |2 bkl | ||
084 | |a 56.11 |2 bkl | ||
100 | 1 | |a Lin, Zhongbing |e verfasserin |4 aut | |
245 | 1 | 0 | |a Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. | ||
520 | |a The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. | ||
650 | 7 | |a Cadmium |2 Elsevier | |
650 | 7 | |a Desorption rate coefficient |2 Elsevier | |
650 | 7 | |a Historical pollution |2 Elsevier | |
650 | 7 | |a Pedotransfer function |2 Elsevier | |
700 | 1 | |a Zou, Xingying |4 oth | |
700 | 1 | |a Zhang, Renduo |4 oth | |
700 | 1 | |a Nguyen, Christophe |4 oth | |
700 | 1 | |a Huang, Jiesheng |4 oth | |
700 | 1 | |a Wang, Kang |4 oth | |
700 | 1 | |a Wu, Jingwei |4 oth | |
700 | 1 | |a Huang, Shuang |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Li, Zhaochao ELSEVIER |t Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading |d 2019 |g Amsterdam [u.a.] |w (DE-627)ELV00327988X |
773 | 1 | 8 | |g volume:257 |g year:2020 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.envpol.2019.113602 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.31 |j Technische Mechanik |q VZ |
936 | b | k | |a 56.11 |j Baukonstruktion |q VZ |
951 | |a AR | ||
952 | |d 257 |j 2020 |h 0 |
author_variant |
z l zl |
---|---|
matchkey_str |
linzhongbingzouxingyingzhangrenduonguyen:2020----:eeomnadniomnaipiainfeornfrucinocdsrtortcefc |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
50.31 56.11 |
publishDate |
2020 |
allfields |
10.1016/j.envpol.2019.113602 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000876.pica (DE-627)ELV04906875X (ELSEVIER)S0269-7491(19)33857-6 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Lin, Zhongbing verfasserin aut Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. Cadmium Elsevier Desorption rate coefficient Elsevier Historical pollution Elsevier Pedotransfer function Elsevier Zou, Xingying oth Zhang, Renduo oth Nguyen, Christophe oth Huang, Jiesheng oth Wang, Kang oth Wu, Jingwei oth Huang, Shuang oth Enthalten in Elsevier Science Li, Zhaochao ELSEVIER Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading 2019 Amsterdam [u.a.] (DE-627)ELV00327988X volume:257 year:2020 pages:0 https://doi.org/10.1016/j.envpol.2019.113602 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 257 2020 0 |
spelling |
10.1016/j.envpol.2019.113602 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000876.pica (DE-627)ELV04906875X (ELSEVIER)S0269-7491(19)33857-6 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Lin, Zhongbing verfasserin aut Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. Cadmium Elsevier Desorption rate coefficient Elsevier Historical pollution Elsevier Pedotransfer function Elsevier Zou, Xingying oth Zhang, Renduo oth Nguyen, Christophe oth Huang, Jiesheng oth Wang, Kang oth Wu, Jingwei oth Huang, Shuang oth Enthalten in Elsevier Science Li, Zhaochao ELSEVIER Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading 2019 Amsterdam [u.a.] (DE-627)ELV00327988X volume:257 year:2020 pages:0 https://doi.org/10.1016/j.envpol.2019.113602 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 257 2020 0 |
allfields_unstemmed |
10.1016/j.envpol.2019.113602 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000876.pica (DE-627)ELV04906875X (ELSEVIER)S0269-7491(19)33857-6 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Lin, Zhongbing verfasserin aut Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. Cadmium Elsevier Desorption rate coefficient Elsevier Historical pollution Elsevier Pedotransfer function Elsevier Zou, Xingying oth Zhang, Renduo oth Nguyen, Christophe oth Huang, Jiesheng oth Wang, Kang oth Wu, Jingwei oth Huang, Shuang oth Enthalten in Elsevier Science Li, Zhaochao ELSEVIER Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading 2019 Amsterdam [u.a.] (DE-627)ELV00327988X volume:257 year:2020 pages:0 https://doi.org/10.1016/j.envpol.2019.113602 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 257 2020 0 |
allfieldsGer |
10.1016/j.envpol.2019.113602 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000876.pica (DE-627)ELV04906875X (ELSEVIER)S0269-7491(19)33857-6 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Lin, Zhongbing verfasserin aut Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. Cadmium Elsevier Desorption rate coefficient Elsevier Historical pollution Elsevier Pedotransfer function Elsevier Zou, Xingying oth Zhang, Renduo oth Nguyen, Christophe oth Huang, Jiesheng oth Wang, Kang oth Wu, Jingwei oth Huang, Shuang oth Enthalten in Elsevier Science Li, Zhaochao ELSEVIER Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading 2019 Amsterdam [u.a.] (DE-627)ELV00327988X volume:257 year:2020 pages:0 https://doi.org/10.1016/j.envpol.2019.113602 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 257 2020 0 |
allfieldsSound |
10.1016/j.envpol.2019.113602 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000876.pica (DE-627)ELV04906875X (ELSEVIER)S0269-7491(19)33857-6 DE-627 ger DE-627 rakwb eng 690 VZ 50.31 bkl 56.11 bkl Lin, Zhongbing verfasserin aut Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. Cadmium Elsevier Desorption rate coefficient Elsevier Historical pollution Elsevier Pedotransfer function Elsevier Zou, Xingying oth Zhang, Renduo oth Nguyen, Christophe oth Huang, Jiesheng oth Wang, Kang oth Wu, Jingwei oth Huang, Shuang oth Enthalten in Elsevier Science Li, Zhaochao ELSEVIER Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading 2019 Amsterdam [u.a.] (DE-627)ELV00327988X volume:257 year:2020 pages:0 https://doi.org/10.1016/j.envpol.2019.113602 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.31 Technische Mechanik VZ 56.11 Baukonstruktion VZ AR 257 2020 0 |
language |
English |
source |
Enthalten in Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading Amsterdam [u.a.] volume:257 year:2020 pages:0 |
sourceStr |
Enthalten in Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading Amsterdam [u.a.] volume:257 year:2020 pages:0 |
format_phy_str_mv |
Article |
bklname |
Technische Mechanik Baukonstruktion |
institution |
findex.gbv.de |
topic_facet |
Cadmium Desorption rate coefficient Historical pollution Pedotransfer function |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading |
authorswithroles_txt_mv |
Lin, Zhongbing @@aut@@ Zou, Xingying @@oth@@ Zhang, Renduo @@oth@@ Nguyen, Christophe @@oth@@ Huang, Jiesheng @@oth@@ Wang, Kang @@oth@@ Wu, Jingwei @@oth@@ Huang, Shuang @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV00327988X |
dewey-sort |
3690 |
id |
ELV04906875X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV04906875X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626023438.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200128s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.envpol.2019.113602</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000876.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV04906875X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0269-7491(19)33857-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lin, Zhongbing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cadmium</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Desorption rate coefficient</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Historical pollution</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pedotransfer function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Xingying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Renduo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Christophe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Jiesheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Jingwei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shuang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Li, Zhaochao ELSEVIER</subfield><subfield code="t">Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00327988X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:257</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.envpol.2019.113602</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">257</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Lin, Zhongbing |
spellingShingle |
Lin, Zhongbing ddc 690 bkl 50.31 bkl 56.11 Elsevier Cadmium Elsevier Desorption rate coefficient Elsevier Historical pollution Elsevier Pedotransfer function Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils |
authorStr |
Lin, Zhongbing |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00327988X |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 50.31 bkl 56.11 bkl Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils Cadmium Elsevier Desorption rate coefficient Elsevier Historical pollution Elsevier Pedotransfer function Elsevier |
topic |
ddc 690 bkl 50.31 bkl 56.11 Elsevier Cadmium Elsevier Desorption rate coefficient Elsevier Historical pollution Elsevier Pedotransfer function |
topic_unstemmed |
ddc 690 bkl 50.31 bkl 56.11 Elsevier Cadmium Elsevier Desorption rate coefficient Elsevier Historical pollution Elsevier Pedotransfer function |
topic_browse |
ddc 690 bkl 50.31 bkl 56.11 Elsevier Cadmium Elsevier Desorption rate coefficient Elsevier Historical pollution Elsevier Pedotransfer function |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x z xz r z rz c n cn j h jh k w kw j w jw s h sh |
hierarchy_parent_title |
Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading |
hierarchy_parent_id |
ELV00327988X |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00327988X |
title |
Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils |
ctrlnum |
(DE-627)ELV04906875X (ELSEVIER)S0269-7491(19)33857-6 |
title_full |
Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils |
author_sort |
Lin, Zhongbing |
journal |
Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading |
journalStr |
Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Lin, Zhongbing |
container_volume |
257 |
class |
690 VZ 50.31 bkl 56.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Lin, Zhongbing |
doi_str_mv |
10.1016/j.envpol.2019.113602 |
dewey-full |
690 |
title_sort |
development and environmental implication of pedotransfer functions of cd desorption rate coefficients in historically polluted soils |
title_auth |
Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils |
abstract |
The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. |
abstractGer |
The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. |
abstract_unstemmed |
The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils |
url |
https://doi.org/10.1016/j.envpol.2019.113602 |
remote_bool |
true |
author2 |
Zou, Xingying Zhang, Renduo Nguyen, Christophe Huang, Jiesheng Wang, Kang Wu, Jingwei Huang, Shuang |
author2Str |
Zou, Xingying Zhang, Renduo Nguyen, Christophe Huang, Jiesheng Wang, Kang Wu, Jingwei Huang, Shuang |
ppnlink |
ELV00327988X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.envpol.2019.113602 |
up_date |
2024-07-06T20:33:12.931Z |
_version_ |
1803863188236664832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV04906875X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626023438.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200128s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.envpol.2019.113602</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000876.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV04906875X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0269-7491(19)33857-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lin, Zhongbing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development and environmental implication of pedotransfer functions of Cd desorption rate coefficients in historically polluted soils</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The desorption rate is an important factor determining cadmium (Cd) ecotoxicity and pollution remediation in soils. The pedotransfer functions (PTFs) of desorption rate coefficients of fresh Cd in soils have been developed in literature. We hypothesized that the aging of Cd pollution would alter Cd desorption process. Taking historically polluted soils as the object, this study aimed at testing the hypothesis and developing new PTFs of desorption rate coefficients for historical Cd. 15 d batch extraction experiments and 13 kinetic models were employed to define Cd desorption rate coefficients in 27 historically polluted soil samples. Compared with fresh Cd, the desorption rate coefficients of historical Cd were lower, and the break time of biphasic desorption processes was retarded to 3 d (4320 min). Different with the usual models for fresh Cd desorption (e.g. parabolic diffusion and two constant rate models), the best models to mimic the historical Cd desorption processes were the pseudo first order, logarithmic, Elovich, and simple Elovich models. The rate-limiting step controlling Cd desorption was changed from the intraparticle diffusion to the interface reaction with aging of pollution. New PTFs of desorption rate coefficients of historical Cd were established (R 2 ≥ 0.71). Cd desorption rate coefficients increased with organic matter and clay contents, but decreased with oxalate extractable Fe content, solution pH, cation exchange capacity, and silt content. The key soil properties influencing desorption rate coefficients were not altered by the aging of pollution. The developed PTFs could guide us to adjusting the ecotoxicity and pollution remediation of Cd in historically polluted field soils.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cadmium</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Desorption rate coefficient</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Historical pollution</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pedotransfer function</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Xingying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Renduo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Christophe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Jiesheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Kang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Jingwei</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Shuang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Li, Zhaochao ELSEVIER</subfield><subfield code="t">Structural failure performance of the encased functionally graded porous cylinder consolidated by graphene platelet under uniform radial loading</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV00327988X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:257</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.envpol.2019.113602</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.11</subfield><subfield code="j">Baukonstruktion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">257</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4007645 |