Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation
• A fine blood vessel segmentation approach designed for 3D renal artery. • Tensor-based graph-cut method using Riemannian matric. • High segmentation accuracy on both simulated and clinical dataset.
Autor*in: |
Wang, Chenglong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation - Mohammadi, Behzad ELSEVIER, 2019, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:60 ; year:2020 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.media.2019.101623 |
---|
Katalog-ID: |
ELV049083600 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV049083600 | ||
003 | DE-627 | ||
005 | 20230624151814.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200128s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.media.2019.101623 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000918.pica |
035 | |a (DE-627)ELV049083600 | ||
035 | |a (ELSEVIER)S1361-8415(19)30159-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 52.43 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.42 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Wang, Chenglong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • A fine blood vessel segmentation approach designed for 3D renal artery. • Tensor-based graph-cut method using Riemannian matric. • High segmentation accuracy on both simulated and clinical dataset. | ||
700 | 1 | |a Oda, Masahiro |4 oth | |
700 | 1 | |a Hayashi, Yuichiro |4 oth | |
700 | 1 | |a Yoshino, Yasushi |4 oth | |
700 | 1 | |a Yamamoto, Tokunori |4 oth | |
700 | 1 | |a Frangi, Alejandro F. |4 oth | |
700 | 1 | |a Mori, Kensaku |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Mohammadi, Behzad ELSEVIER |t Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation |d 2019 |g Amsterdam [u.a.] |w (DE-627)ELV003074609 |
773 | 1 | 8 | |g volume:60 |g year:2020 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.media.2019.101623 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 52.43 |j Kältetechnik |q VZ |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |q VZ |
936 | b | k | |a 52.42 |j Heizungstechnik |j Lüftungstechnik |j Klimatechnik |q VZ |
936 | b | k | |a 50.38 |j Technische Thermodynamik |q VZ |
951 | |a AR | ||
952 | |d 60 |j 2020 |h 0 |
author_variant |
c w cw |
---|---|
matchkey_str |
wangchenglongodamasahirohayashiyuichiroy:2020----:esruaesraegahubodeslemnainehdnisplcto |
hierarchy_sort_str |
2020 |
bklnumber |
52.43 52.52 52.42 50.38 |
publishDate |
2020 |
allfields |
10.1016/j.media.2019.101623 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000918.pica (DE-627)ELV049083600 (ELSEVIER)S1361-8415(19)30159-8 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Wang, Chenglong verfasserin aut Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A fine blood vessel segmentation approach designed for 3D renal artery. • Tensor-based graph-cut method using Riemannian matric. • High segmentation accuracy on both simulated and clinical dataset. Oda, Masahiro oth Hayashi, Yuichiro oth Yoshino, Yasushi oth Yamamoto, Tokunori oth Frangi, Alejandro F. oth Mori, Kensaku oth Enthalten in Elsevier Science Mohammadi, Behzad ELSEVIER Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation 2019 Amsterdam [u.a.] (DE-627)ELV003074609 volume:60 year:2020 pages:0 https://doi.org/10.1016/j.media.2019.101623 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 60 2020 0 |
spelling |
10.1016/j.media.2019.101623 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000918.pica (DE-627)ELV049083600 (ELSEVIER)S1361-8415(19)30159-8 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Wang, Chenglong verfasserin aut Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A fine blood vessel segmentation approach designed for 3D renal artery. • Tensor-based graph-cut method using Riemannian matric. • High segmentation accuracy on both simulated and clinical dataset. Oda, Masahiro oth Hayashi, Yuichiro oth Yoshino, Yasushi oth Yamamoto, Tokunori oth Frangi, Alejandro F. oth Mori, Kensaku oth Enthalten in Elsevier Science Mohammadi, Behzad ELSEVIER Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation 2019 Amsterdam [u.a.] (DE-627)ELV003074609 volume:60 year:2020 pages:0 https://doi.org/10.1016/j.media.2019.101623 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 60 2020 0 |
allfields_unstemmed |
10.1016/j.media.2019.101623 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000918.pica (DE-627)ELV049083600 (ELSEVIER)S1361-8415(19)30159-8 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Wang, Chenglong verfasserin aut Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A fine blood vessel segmentation approach designed for 3D renal artery. • Tensor-based graph-cut method using Riemannian matric. • High segmentation accuracy on both simulated and clinical dataset. Oda, Masahiro oth Hayashi, Yuichiro oth Yoshino, Yasushi oth Yamamoto, Tokunori oth Frangi, Alejandro F. oth Mori, Kensaku oth Enthalten in Elsevier Science Mohammadi, Behzad ELSEVIER Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation 2019 Amsterdam [u.a.] (DE-627)ELV003074609 volume:60 year:2020 pages:0 https://doi.org/10.1016/j.media.2019.101623 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 60 2020 0 |
allfieldsGer |
10.1016/j.media.2019.101623 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000918.pica (DE-627)ELV049083600 (ELSEVIER)S1361-8415(19)30159-8 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Wang, Chenglong verfasserin aut Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A fine blood vessel segmentation approach designed for 3D renal artery. • Tensor-based graph-cut method using Riemannian matric. • High segmentation accuracy on both simulated and clinical dataset. Oda, Masahiro oth Hayashi, Yuichiro oth Yoshino, Yasushi oth Yamamoto, Tokunori oth Frangi, Alejandro F. oth Mori, Kensaku oth Enthalten in Elsevier Science Mohammadi, Behzad ELSEVIER Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation 2019 Amsterdam [u.a.] (DE-627)ELV003074609 volume:60 year:2020 pages:0 https://doi.org/10.1016/j.media.2019.101623 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 60 2020 0 |
allfieldsSound |
10.1016/j.media.2019.101623 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000918.pica (DE-627)ELV049083600 (ELSEVIER)S1361-8415(19)30159-8 DE-627 ger DE-627 rakwb eng 690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Wang, Chenglong verfasserin aut Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • A fine blood vessel segmentation approach designed for 3D renal artery. • Tensor-based graph-cut method using Riemannian matric. • High segmentation accuracy on both simulated and clinical dataset. Oda, Masahiro oth Hayashi, Yuichiro oth Yoshino, Yasushi oth Yamamoto, Tokunori oth Frangi, Alejandro F. oth Mori, Kensaku oth Enthalten in Elsevier Science Mohammadi, Behzad ELSEVIER Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation 2019 Amsterdam [u.a.] (DE-627)ELV003074609 volume:60 year:2020 pages:0 https://doi.org/10.1016/j.media.2019.101623 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.43 Kältetechnik VZ 52.52 Thermische Energieerzeugung Wärmetechnik VZ 52.42 Heizungstechnik Lüftungstechnik Klimatechnik VZ 50.38 Technische Thermodynamik VZ AR 60 2020 0 |
language |
English |
source |
Enthalten in Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation Amsterdam [u.a.] volume:60 year:2020 pages:0 |
sourceStr |
Enthalten in Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation Amsterdam [u.a.] volume:60 year:2020 pages:0 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Thermische Energieerzeugung Wärmetechnik Heizungstechnik Lüftungstechnik Klimatechnik Technische Thermodynamik |
institution |
findex.gbv.de |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation |
authorswithroles_txt_mv |
Wang, Chenglong @@aut@@ Oda, Masahiro @@oth@@ Hayashi, Yuichiro @@oth@@ Yoshino, Yasushi @@oth@@ Yamamoto, Tokunori @@oth@@ Frangi, Alejandro F. @@oth@@ Mori, Kensaku @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV003074609 |
dewey-sort |
3690 |
id |
ELV049083600 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049083600</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624151814.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200128s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.media.2019.101623</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000918.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049083600</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1361-8415(19)30159-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Chenglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• A fine blood vessel segmentation approach designed for 3D renal artery. • Tensor-based graph-cut method using Riemannian matric. • High segmentation accuracy on both simulated and clinical dataset.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oda, Masahiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hayashi, Yuichiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshino, Yasushi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamamoto, Tokunori</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frangi, Alejandro F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mori, Kensaku</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Mohammadi, Behzad ELSEVIER</subfield><subfield code="t">Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003074609</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.media.2019.101623</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Wang, Chenglong |
spellingShingle |
Wang, Chenglong ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation |
authorStr |
Wang, Chenglong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003074609 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation |
topic |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 |
topic_unstemmed |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 |
topic_browse |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
m o mo y h yh y y yy t y ty a f f af aff k m km |
hierarchy_parent_title |
Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation |
hierarchy_parent_id |
ELV003074609 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003074609 |
title |
Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation |
ctrlnum |
(DE-627)ELV049083600 (ELSEVIER)S1361-8415(19)30159-8 |
title_full |
Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation |
author_sort |
Wang, Chenglong |
journal |
Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation |
journalStr |
Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Wang, Chenglong |
container_volume |
60 |
class |
690 VZ 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Chenglong |
doi_str_mv |
10.1016/j.media.2019.101623 |
dewey-full |
690 |
title_sort |
tensor-cut: a tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation |
title_auth |
Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation |
abstract |
• A fine blood vessel segmentation approach designed for 3D renal artery. • Tensor-based graph-cut method using Riemannian matric. • High segmentation accuracy on both simulated and clinical dataset. |
abstractGer |
• A fine blood vessel segmentation approach designed for 3D renal artery. • Tensor-based graph-cut method using Riemannian matric. • High segmentation accuracy on both simulated and clinical dataset. |
abstract_unstemmed |
• A fine blood vessel segmentation approach designed for 3D renal artery. • Tensor-based graph-cut method using Riemannian matric. • High segmentation accuracy on both simulated and clinical dataset. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation |
url |
https://doi.org/10.1016/j.media.2019.101623 |
remote_bool |
true |
author2 |
Oda, Masahiro Hayashi, Yuichiro Yoshino, Yasushi Yamamoto, Tokunori Frangi, Alejandro F. Mori, Kensaku |
author2Str |
Oda, Masahiro Hayashi, Yuichiro Yoshino, Yasushi Yamamoto, Tokunori Frangi, Alejandro F. Mori, Kensaku |
ppnlink |
ELV003074609 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.media.2019.101623 |
up_date |
2024-07-06T20:35:41.531Z |
_version_ |
1803863344055058432 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049083600</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624151814.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200128s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.media.2019.101623</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000918.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049083600</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1361-8415(19)30159-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Chenglong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Tensor-cut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• A fine blood vessel segmentation approach designed for 3D renal artery. • Tensor-based graph-cut method using Riemannian matric. • High segmentation accuracy on both simulated and clinical dataset.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oda, Masahiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hayashi, Yuichiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yoshino, Yasushi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamamoto, Tokunori</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frangi, Alejandro F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mori, Kensaku</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Mohammadi, Behzad ELSEVIER</subfield><subfield code="t">Exergoeconomic analysis and multi-objective optimization of a semi-solar greenhouse with experimental validation</subfield><subfield code="d">2019</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003074609</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.media.2019.101623</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.399419 |