Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity
Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS)...
Ausführliche Beschreibung
Autor*in: |
Raimundo, Rafael A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Biological mechanisms of cadmium accumulation in edible Amaranth ( - Guo, Shi-Hong ELSEVIER, 2020, an international journal, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:139 ; year:2020 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jpcs.2019.109325 |
---|
Katalog-ID: |
ELV049356658 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV049356658 | ||
003 | DE-627 | ||
005 | 20230626024139.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200518s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jpcs.2019.109325 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000907.pica |
035 | |a (DE-627)ELV049356658 | ||
035 | |a (ELSEVIER)S0022-3697(19)32362-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |a 570 |a 690 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 48.00 |2 bkl | ||
100 | 1 | |a Raimundo, Rafael A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. | ||
520 | |a Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. | ||
650 | 7 | |a NiFe–NiFe2O4 |2 Elsevier | |
650 | 7 | |a SBS |2 Elsevier | |
650 | 7 | |a Composite nanofibers |2 Elsevier | |
650 | 7 | |a OER |2 Elsevier | |
650 | 7 | |a Magnetic properties |2 Elsevier | |
700 | 1 | |a Silva, Vinícius D. |4 oth | |
700 | 1 | |a Medeiros, Eliton S. |4 oth | |
700 | 1 | |a Macedo, Daniel A. |4 oth | |
700 | 1 | |a Simões, Thiago A. |4 oth | |
700 | 1 | |a Gomes, Uílame U. |4 oth | |
700 | 1 | |a Morales, Marco A. |4 oth | |
700 | 1 | |a Gomes, Rodinei M. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Guo, Shi-Hong ELSEVIER |t Biological mechanisms of cadmium accumulation in edible Amaranth ( |d 2020 |d an international journal |g New York, NY [u.a.] |w (DE-627)ELV004090616 |
773 | 1 | 8 | |g volume:139 |g year:2020 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jpcs.2019.109325 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-FOR | ||
936 | b | k | |a 48.00 |j Land- und Forstwirtschaft: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 139 |j 2020 |h 0 |
author_variant |
r a r ra rar |
---|---|
matchkey_str |
raimundorafaelasilvavinciusdmedeiroselit:2020----:utfntoasltobosunfnf24opstnnfbrsrcuean |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
48.00 |
publishDate |
2020 |
allfields |
10.1016/j.jpcs.2019.109325 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000907.pica (DE-627)ELV049356658 (ELSEVIER)S0022-3697(19)32362-5 DE-627 ger DE-627 rakwb eng 333.7 570 690 VZ BIODIV DE-30 fid 48.00 bkl Raimundo, Rafael A. verfasserin aut Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. NiFe–NiFe2O4 Elsevier SBS Elsevier Composite nanofibers Elsevier OER Elsevier Magnetic properties Elsevier Silva, Vinícius D. oth Medeiros, Eliton S. oth Macedo, Daniel A. oth Simões, Thiago A. oth Gomes, Uílame U. oth Morales, Marco A. oth Gomes, Rodinei M. oth Enthalten in Elsevier Guo, Shi-Hong ELSEVIER Biological mechanisms of cadmium accumulation in edible Amaranth ( 2020 an international journal New York, NY [u.a.] (DE-627)ELV004090616 volume:139 year:2020 pages:0 https://doi.org/10.1016/j.jpcs.2019.109325 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA SSG-OPC-FOR 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 139 2020 0 |
spelling |
10.1016/j.jpcs.2019.109325 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000907.pica (DE-627)ELV049356658 (ELSEVIER)S0022-3697(19)32362-5 DE-627 ger DE-627 rakwb eng 333.7 570 690 VZ BIODIV DE-30 fid 48.00 bkl Raimundo, Rafael A. verfasserin aut Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. NiFe–NiFe2O4 Elsevier SBS Elsevier Composite nanofibers Elsevier OER Elsevier Magnetic properties Elsevier Silva, Vinícius D. oth Medeiros, Eliton S. oth Macedo, Daniel A. oth Simões, Thiago A. oth Gomes, Uílame U. oth Morales, Marco A. oth Gomes, Rodinei M. oth Enthalten in Elsevier Guo, Shi-Hong ELSEVIER Biological mechanisms of cadmium accumulation in edible Amaranth ( 2020 an international journal New York, NY [u.a.] (DE-627)ELV004090616 volume:139 year:2020 pages:0 https://doi.org/10.1016/j.jpcs.2019.109325 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA SSG-OPC-FOR 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 139 2020 0 |
allfields_unstemmed |
10.1016/j.jpcs.2019.109325 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000907.pica (DE-627)ELV049356658 (ELSEVIER)S0022-3697(19)32362-5 DE-627 ger DE-627 rakwb eng 333.7 570 690 VZ BIODIV DE-30 fid 48.00 bkl Raimundo, Rafael A. verfasserin aut Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. NiFe–NiFe2O4 Elsevier SBS Elsevier Composite nanofibers Elsevier OER Elsevier Magnetic properties Elsevier Silva, Vinícius D. oth Medeiros, Eliton S. oth Macedo, Daniel A. oth Simões, Thiago A. oth Gomes, Uílame U. oth Morales, Marco A. oth Gomes, Rodinei M. oth Enthalten in Elsevier Guo, Shi-Hong ELSEVIER Biological mechanisms of cadmium accumulation in edible Amaranth ( 2020 an international journal New York, NY [u.a.] (DE-627)ELV004090616 volume:139 year:2020 pages:0 https://doi.org/10.1016/j.jpcs.2019.109325 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA SSG-OPC-FOR 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 139 2020 0 |
allfieldsGer |
10.1016/j.jpcs.2019.109325 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000907.pica (DE-627)ELV049356658 (ELSEVIER)S0022-3697(19)32362-5 DE-627 ger DE-627 rakwb eng 333.7 570 690 VZ BIODIV DE-30 fid 48.00 bkl Raimundo, Rafael A. verfasserin aut Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. NiFe–NiFe2O4 Elsevier SBS Elsevier Composite nanofibers Elsevier OER Elsevier Magnetic properties Elsevier Silva, Vinícius D. oth Medeiros, Eliton S. oth Macedo, Daniel A. oth Simões, Thiago A. oth Gomes, Uílame U. oth Morales, Marco A. oth Gomes, Rodinei M. oth Enthalten in Elsevier Guo, Shi-Hong ELSEVIER Biological mechanisms of cadmium accumulation in edible Amaranth ( 2020 an international journal New York, NY [u.a.] (DE-627)ELV004090616 volume:139 year:2020 pages:0 https://doi.org/10.1016/j.jpcs.2019.109325 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA SSG-OPC-FOR 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 139 2020 0 |
allfieldsSound |
10.1016/j.jpcs.2019.109325 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000907.pica (DE-627)ELV049356658 (ELSEVIER)S0022-3697(19)32362-5 DE-627 ger DE-627 rakwb eng 333.7 570 690 VZ BIODIV DE-30 fid 48.00 bkl Raimundo, Rafael A. verfasserin aut Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. NiFe–NiFe2O4 Elsevier SBS Elsevier Composite nanofibers Elsevier OER Elsevier Magnetic properties Elsevier Silva, Vinícius D. oth Medeiros, Eliton S. oth Macedo, Daniel A. oth Simões, Thiago A. oth Gomes, Uílame U. oth Morales, Marco A. oth Gomes, Rodinei M. oth Enthalten in Elsevier Guo, Shi-Hong ELSEVIER Biological mechanisms of cadmium accumulation in edible Amaranth ( 2020 an international journal New York, NY [u.a.] (DE-627)ELV004090616 volume:139 year:2020 pages:0 https://doi.org/10.1016/j.jpcs.2019.109325 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA SSG-OPC-FOR 48.00 Land- und Forstwirtschaft: Allgemeines VZ AR 139 2020 0 |
language |
English |
source |
Enthalten in Biological mechanisms of cadmium accumulation in edible Amaranth ( New York, NY [u.a.] volume:139 year:2020 pages:0 |
sourceStr |
Enthalten in Biological mechanisms of cadmium accumulation in edible Amaranth ( New York, NY [u.a.] volume:139 year:2020 pages:0 |
format_phy_str_mv |
Article |
bklname |
Land- und Forstwirtschaft: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
NiFe–NiFe2O4 SBS Composite nanofibers OER Magnetic properties |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Biological mechanisms of cadmium accumulation in edible Amaranth ( |
authorswithroles_txt_mv |
Raimundo, Rafael A. @@aut@@ Silva, Vinícius D. @@oth@@ Medeiros, Eliton S. @@oth@@ Macedo, Daniel A. @@oth@@ Simões, Thiago A. @@oth@@ Gomes, Uílame U. @@oth@@ Morales, Marco A. @@oth@@ Gomes, Rodinei M. @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV004090616 |
dewey-sort |
3333.7 |
id |
ELV049356658 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049356658</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626024139.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpcs.2019.109325</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000907.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049356658</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-3697(19)32362-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">570</subfield><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Raimundo, Rafael A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NiFe–NiFe2O4</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SBS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Composite nanofibers</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">OER</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Magnetic properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, Vinícius D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Medeiros, Eliton S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Macedo, Daniel A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simões, Thiago A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gomes, Uílame U.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morales, Marco A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gomes, Rodinei M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Guo, Shi-Hong ELSEVIER</subfield><subfield code="t">Biological mechanisms of cadmium accumulation in edible Amaranth (</subfield><subfield code="d">2020</subfield><subfield code="d">an international journal</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV004090616</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:139</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpcs.2019.109325</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="j">Land- und Forstwirtschaft: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">139</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Raimundo, Rafael A. |
spellingShingle |
Raimundo, Rafael A. ddc 333.7 fid BIODIV bkl 48.00 Elsevier NiFe–NiFe2O4 Elsevier SBS Elsevier Composite nanofibers Elsevier OER Elsevier Magnetic properties Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity |
authorStr |
Raimundo, Rafael A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV004090616 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 570 - Life sciences; biology 690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
333.7 570 690 VZ BIODIV DE-30 fid 48.00 bkl Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity NiFe–NiFe2O4 Elsevier SBS Elsevier Composite nanofibers Elsevier OER Elsevier Magnetic properties Elsevier |
topic |
ddc 333.7 fid BIODIV bkl 48.00 Elsevier NiFe–NiFe2O4 Elsevier SBS Elsevier Composite nanofibers Elsevier OER Elsevier Magnetic properties |
topic_unstemmed |
ddc 333.7 fid BIODIV bkl 48.00 Elsevier NiFe–NiFe2O4 Elsevier SBS Elsevier Composite nanofibers Elsevier OER Elsevier Magnetic properties |
topic_browse |
ddc 333.7 fid BIODIV bkl 48.00 Elsevier NiFe–NiFe2O4 Elsevier SBS Elsevier Composite nanofibers Elsevier OER Elsevier Magnetic properties |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
v d s vd vds e s m es esm d a m da dam t a s ta tas u u g uu uug m a m ma mam r m g rm rmg |
hierarchy_parent_title |
Biological mechanisms of cadmium accumulation in edible Amaranth ( |
hierarchy_parent_id |
ELV004090616 |
dewey-tens |
330 - Economics 570 - Life sciences; biology 690 - Building & construction |
hierarchy_top_title |
Biological mechanisms of cadmium accumulation in edible Amaranth ( |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV004090616 |
title |
Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity |
ctrlnum |
(DE-627)ELV049356658 (ELSEVIER)S0022-3697(19)32362-5 |
title_full |
Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity |
author_sort |
Raimundo, Rafael A. |
journal |
Biological mechanisms of cadmium accumulation in edible Amaranth ( |
journalStr |
Biological mechanisms of cadmium accumulation in edible Amaranth ( |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Raimundo, Rafael A. |
container_volume |
139 |
class |
333.7 570 690 VZ BIODIV DE-30 fid 48.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Raimundo, Rafael A. |
doi_str_mv |
10.1016/j.jpcs.2019.109325 |
dewey-full |
333.7 570 690 |
title_sort |
multifunctional solution blow spun nife–nife2o4 composite nanofibers: structure, magnetic properties and oer activity |
title_auth |
Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity |
abstract |
Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. |
abstractGer |
Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. |
abstract_unstemmed |
Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-BIODIV SSG-OLC-PHA SSG-OPC-FOR |
title_short |
Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity |
url |
https://doi.org/10.1016/j.jpcs.2019.109325 |
remote_bool |
true |
author2 |
Silva, Vinícius D. Medeiros, Eliton S. Macedo, Daniel A. Simões, Thiago A. Gomes, Uílame U. Morales, Marco A. Gomes, Rodinei M. |
author2Str |
Silva, Vinícius D. Medeiros, Eliton S. Macedo, Daniel A. Simões, Thiago A. Gomes, Uílame U. Morales, Marco A. Gomes, Rodinei M. |
ppnlink |
ELV004090616 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.jpcs.2019.109325 |
up_date |
2024-07-06T21:21:04.250Z |
_version_ |
1803866199032856576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049356658</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626024139.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpcs.2019.109325</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000907.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049356658</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-3697(19)32362-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">570</subfield><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">48.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Raimundo, Rafael A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Multifunctional nanomaterials are of great technological interest due to a wide range of applications. This study reports the structure, magnetic properties and electrocatalytic activity to oxygen evolution reaction (OER) of NiFe–NiFe2O4 composite nanofibers prepared by solution blow spinning (SBS) with an average diameter of 133.4 nm. X-ray diffraction (XRD) analysis revealed that NiFe alloy crystallites have an average size of 26.3 nm. The magnetization versus temperature (MxT) and magnetization versus magnetic field (MxH) measurements show saturation magnetization of 123 emu g−1 and thermal blocking temperature of 117 K. The MxT measurements show a quick response of the composite sample to magnetic field variations of ±0.3 Oe, indicating that the solution blow spun material has great potential for magnetic sensor applications. From an electrocatalytic point of view, nanofibers show a low overpotential of 316 mV vs RHE at J = 10 mA cm−2, and a significant turnover frequency (TOF) of 4.03 s−1 at only 400 mV. NiFe–NiFe2O4 nanofibers have an excellent chemical stability as revealed by chronopotentiometry analysis along 15 h. These results stand solution blow spun NiFe–NiFe2O4 composite nanofibers in line with the best NiFe-based catalysts reported in the literature.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NiFe–NiFe2O4</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SBS</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Composite nanofibers</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">OER</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Magnetic properties</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silva, Vinícius D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Medeiros, Eliton S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Macedo, Daniel A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simões, Thiago A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gomes, Uílame U.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morales, Marco A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gomes, Rodinei M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Guo, Shi-Hong ELSEVIER</subfield><subfield code="t">Biological mechanisms of cadmium accumulation in edible Amaranth (</subfield><subfield code="d">2020</subfield><subfield code="d">an international journal</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV004090616</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:139</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpcs.2019.109325</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FOR</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">48.00</subfield><subfield code="j">Land- und Forstwirtschaft: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">139</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4009666 |