Texture analysis and multiple-instance learning for the classification of malignant lymphomas

Highlights • Malignant lymphomas subtype classification with machine learning. • Texture features extracted from FDG-PET volumes of interest. • Multiple-instance learning SVM for patient-level categorization. • Random forests exploited for feature selection.

Gespeichert in:
Autor*in:

Lippi, Marco [verfasserIn]

Gianotti, Stefania

Fama, Angelo

Casali, Massimiliano

Barbolini, Elisa

Ferrari, Angela

Fioroni, Federica

Iori, Mauro

Luminari, Stefano

Menga, Massimo

Merli, Francesco

Trojani, Valeria

Versari, Annibale

Zanelli, Magda

Bertolini, Marco

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2020

Übergeordnetes Werk:

Enthalten in: Dynamic measurement of stay-cable force using digital image techniques - Du, Wenkang ELSEVIER, 2019, an international journal devoted to the development, implementation and exchange of computing methodology and software systems in biomedical research and medical practice, Amsterdam

Übergeordnetes Werk:

volume:185 ; year:2020 ; pages:0

Links:

Volltext

DOI / URN:

10.1016/j.cmpb.2019.105153

Katalog-ID:

ELV049389130

Nicht das Richtige dabei?

Schreiben Sie uns!