Texture analysis and multiple-instance learning for the classification of malignant lymphomas
Highlights • Malignant lymphomas subtype classification with machine learning. • Texture features extracted from FDG-PET volumes of interest. • Multiple-instance learning SVM for patient-level categorization. • Random forests exploited for feature selection.
Autor*in: |
Lippi, Marco [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Dynamic measurement of stay-cable force using digital image techniques - Du, Wenkang ELSEVIER, 2019, an international journal devoted to the development, implementation and exchange of computing methodology and software systems in biomedical research and medical practice, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:185 ; year:2020 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.cmpb.2019.105153 |
---|
Katalog-ID: |
ELV049389130 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV049389130 | ||
003 | DE-627 | ||
005 | 20230624153939.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200518s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cmpb.2019.105153 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000912.pica |
035 | |a (DE-627)ELV049389130 | ||
035 | |a (ELSEVIER)S0169-2607(19)30205-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
084 | |a 50.21 |2 bkl | ||
100 | 1 | |a Lippi, Marco |e verfasserin |4 aut | |
245 | 1 | 0 | |a Texture analysis and multiple-instance learning for the classification of malignant lymphomas |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Highlights • Malignant lymphomas subtype classification with machine learning. • Texture features extracted from FDG-PET volumes of interest. • Multiple-instance learning SVM for patient-level categorization. • Random forests exploited for feature selection. | ||
700 | 1 | |a Gianotti, Stefania |4 oth | |
700 | 1 | |a Fama, Angelo |4 oth | |
700 | 1 | |a Casali, Massimiliano |4 oth | |
700 | 1 | |a Barbolini, Elisa |4 oth | |
700 | 1 | |a Ferrari, Angela |4 oth | |
700 | 1 | |a Fioroni, Federica |4 oth | |
700 | 1 | |a Iori, Mauro |4 oth | |
700 | 1 | |a Luminari, Stefano |4 oth | |
700 | 1 | |a Menga, Massimo |4 oth | |
700 | 1 | |a Merli, Francesco |4 oth | |
700 | 1 | |a Trojani, Valeria |4 oth | |
700 | 1 | |a Versari, Annibale |4 oth | |
700 | 1 | |a Zanelli, Magda |4 oth | |
700 | 1 | |a Bertolini, Marco |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Du, Wenkang ELSEVIER |t Dynamic measurement of stay-cable force using digital image techniques |d 2019 |d an international journal devoted to the development, implementation and exchange of computing methodology and software systems in biomedical research and medical practice |g Amsterdam |w (DE-627)ELV003255476 |
773 | 1 | 8 | |g volume:185 |g year:2020 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.cmpb.2019.105153 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 50.21 |j Messtechnik |q VZ |
951 | |a AR | ||
952 | |d 185 |j 2020 |h 0 |
author_variant |
m l ml |
---|---|
matchkey_str |
lippimarcogianottistefaniafamaangelocasa:2020----:etraayiadutpentneerigotelsiiai |
hierarchy_sort_str |
2020 |
bklnumber |
50.21 |
publishDate |
2020 |
allfields |
10.1016/j.cmpb.2019.105153 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000912.pica (DE-627)ELV049389130 (ELSEVIER)S0169-2607(19)30205-6 DE-627 ger DE-627 rakwb eng 660 VZ 50.21 bkl Lippi, Marco verfasserin aut Texture analysis and multiple-instance learning for the classification of malignant lymphomas 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Highlights • Malignant lymphomas subtype classification with machine learning. • Texture features extracted from FDG-PET volumes of interest. • Multiple-instance learning SVM for patient-level categorization. • Random forests exploited for feature selection. Gianotti, Stefania oth Fama, Angelo oth Casali, Massimiliano oth Barbolini, Elisa oth Ferrari, Angela oth Fioroni, Federica oth Iori, Mauro oth Luminari, Stefano oth Menga, Massimo oth Merli, Francesco oth Trojani, Valeria oth Versari, Annibale oth Zanelli, Magda oth Bertolini, Marco oth Enthalten in Elsevier Du, Wenkang ELSEVIER Dynamic measurement of stay-cable force using digital image techniques 2019 an international journal devoted to the development, implementation and exchange of computing methodology and software systems in biomedical research and medical practice Amsterdam (DE-627)ELV003255476 volume:185 year:2020 pages:0 https://doi.org/10.1016/j.cmpb.2019.105153 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.21 Messtechnik VZ AR 185 2020 0 |
spelling |
10.1016/j.cmpb.2019.105153 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000912.pica (DE-627)ELV049389130 (ELSEVIER)S0169-2607(19)30205-6 DE-627 ger DE-627 rakwb eng 660 VZ 50.21 bkl Lippi, Marco verfasserin aut Texture analysis and multiple-instance learning for the classification of malignant lymphomas 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Highlights • Malignant lymphomas subtype classification with machine learning. • Texture features extracted from FDG-PET volumes of interest. • Multiple-instance learning SVM for patient-level categorization. • Random forests exploited for feature selection. Gianotti, Stefania oth Fama, Angelo oth Casali, Massimiliano oth Barbolini, Elisa oth Ferrari, Angela oth Fioroni, Federica oth Iori, Mauro oth Luminari, Stefano oth Menga, Massimo oth Merli, Francesco oth Trojani, Valeria oth Versari, Annibale oth Zanelli, Magda oth Bertolini, Marco oth Enthalten in Elsevier Du, Wenkang ELSEVIER Dynamic measurement of stay-cable force using digital image techniques 2019 an international journal devoted to the development, implementation and exchange of computing methodology and software systems in biomedical research and medical practice Amsterdam (DE-627)ELV003255476 volume:185 year:2020 pages:0 https://doi.org/10.1016/j.cmpb.2019.105153 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.21 Messtechnik VZ AR 185 2020 0 |
allfields_unstemmed |
10.1016/j.cmpb.2019.105153 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000912.pica (DE-627)ELV049389130 (ELSEVIER)S0169-2607(19)30205-6 DE-627 ger DE-627 rakwb eng 660 VZ 50.21 bkl Lippi, Marco verfasserin aut Texture analysis and multiple-instance learning for the classification of malignant lymphomas 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Highlights • Malignant lymphomas subtype classification with machine learning. • Texture features extracted from FDG-PET volumes of interest. • Multiple-instance learning SVM for patient-level categorization. • Random forests exploited for feature selection. Gianotti, Stefania oth Fama, Angelo oth Casali, Massimiliano oth Barbolini, Elisa oth Ferrari, Angela oth Fioroni, Federica oth Iori, Mauro oth Luminari, Stefano oth Menga, Massimo oth Merli, Francesco oth Trojani, Valeria oth Versari, Annibale oth Zanelli, Magda oth Bertolini, Marco oth Enthalten in Elsevier Du, Wenkang ELSEVIER Dynamic measurement of stay-cable force using digital image techniques 2019 an international journal devoted to the development, implementation and exchange of computing methodology and software systems in biomedical research and medical practice Amsterdam (DE-627)ELV003255476 volume:185 year:2020 pages:0 https://doi.org/10.1016/j.cmpb.2019.105153 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.21 Messtechnik VZ AR 185 2020 0 |
allfieldsGer |
10.1016/j.cmpb.2019.105153 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000912.pica (DE-627)ELV049389130 (ELSEVIER)S0169-2607(19)30205-6 DE-627 ger DE-627 rakwb eng 660 VZ 50.21 bkl Lippi, Marco verfasserin aut Texture analysis and multiple-instance learning for the classification of malignant lymphomas 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Highlights • Malignant lymphomas subtype classification with machine learning. • Texture features extracted from FDG-PET volumes of interest. • Multiple-instance learning SVM for patient-level categorization. • Random forests exploited for feature selection. Gianotti, Stefania oth Fama, Angelo oth Casali, Massimiliano oth Barbolini, Elisa oth Ferrari, Angela oth Fioroni, Federica oth Iori, Mauro oth Luminari, Stefano oth Menga, Massimo oth Merli, Francesco oth Trojani, Valeria oth Versari, Annibale oth Zanelli, Magda oth Bertolini, Marco oth Enthalten in Elsevier Du, Wenkang ELSEVIER Dynamic measurement of stay-cable force using digital image techniques 2019 an international journal devoted to the development, implementation and exchange of computing methodology and software systems in biomedical research and medical practice Amsterdam (DE-627)ELV003255476 volume:185 year:2020 pages:0 https://doi.org/10.1016/j.cmpb.2019.105153 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.21 Messtechnik VZ AR 185 2020 0 |
allfieldsSound |
10.1016/j.cmpb.2019.105153 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000912.pica (DE-627)ELV049389130 (ELSEVIER)S0169-2607(19)30205-6 DE-627 ger DE-627 rakwb eng 660 VZ 50.21 bkl Lippi, Marco verfasserin aut Texture analysis and multiple-instance learning for the classification of malignant lymphomas 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Highlights • Malignant lymphomas subtype classification with machine learning. • Texture features extracted from FDG-PET volumes of interest. • Multiple-instance learning SVM for patient-level categorization. • Random forests exploited for feature selection. Gianotti, Stefania oth Fama, Angelo oth Casali, Massimiliano oth Barbolini, Elisa oth Ferrari, Angela oth Fioroni, Federica oth Iori, Mauro oth Luminari, Stefano oth Menga, Massimo oth Merli, Francesco oth Trojani, Valeria oth Versari, Annibale oth Zanelli, Magda oth Bertolini, Marco oth Enthalten in Elsevier Du, Wenkang ELSEVIER Dynamic measurement of stay-cable force using digital image techniques 2019 an international journal devoted to the development, implementation and exchange of computing methodology and software systems in biomedical research and medical practice Amsterdam (DE-627)ELV003255476 volume:185 year:2020 pages:0 https://doi.org/10.1016/j.cmpb.2019.105153 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.21 Messtechnik VZ AR 185 2020 0 |
language |
English |
source |
Enthalten in Dynamic measurement of stay-cable force using digital image techniques Amsterdam volume:185 year:2020 pages:0 |
sourceStr |
Enthalten in Dynamic measurement of stay-cable force using digital image techniques Amsterdam volume:185 year:2020 pages:0 |
format_phy_str_mv |
Article |
bklname |
Messtechnik |
institution |
findex.gbv.de |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Dynamic measurement of stay-cable force using digital image techniques |
authorswithroles_txt_mv |
Lippi, Marco @@aut@@ Gianotti, Stefania @@oth@@ Fama, Angelo @@oth@@ Casali, Massimiliano @@oth@@ Barbolini, Elisa @@oth@@ Ferrari, Angela @@oth@@ Fioroni, Federica @@oth@@ Iori, Mauro @@oth@@ Luminari, Stefano @@oth@@ Menga, Massimo @@oth@@ Merli, Francesco @@oth@@ Trojani, Valeria @@oth@@ Versari, Annibale @@oth@@ Zanelli, Magda @@oth@@ Bertolini, Marco @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV003255476 |
dewey-sort |
3660 |
id |
ELV049389130 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049389130</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624153939.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cmpb.2019.105153</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000912.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049389130</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-2607(19)30205-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lippi, Marco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Texture analysis and multiple-instance learning for the classification of malignant lymphomas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights • Malignant lymphomas subtype classification with machine learning. • Texture features extracted from FDG-PET volumes of interest. • Multiple-instance learning SVM for patient-level categorization. • Random forests exploited for feature selection.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gianotti, Stefania</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fama, Angelo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Casali, Massimiliano</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barbolini, Elisa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferrari, Angela</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fioroni, Federica</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iori, Mauro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luminari, Stefano</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Menga, Massimo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Merli, Francesco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trojani, Valeria</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Versari, Annibale</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zanelli, Magda</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertolini, Marco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Du, Wenkang ELSEVIER</subfield><subfield code="t">Dynamic measurement of stay-cable force using digital image techniques</subfield><subfield code="d">2019</subfield><subfield code="d">an international journal devoted to the development, implementation and exchange of computing methodology and software systems in biomedical research and medical practice</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV003255476</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:185</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cmpb.2019.105153</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.21</subfield><subfield code="j">Messtechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">185</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Lippi, Marco |
spellingShingle |
Lippi, Marco ddc 660 bkl 50.21 Texture analysis and multiple-instance learning for the classification of malignant lymphomas |
authorStr |
Lippi, Marco |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003255476 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
660 VZ 50.21 bkl Texture analysis and multiple-instance learning for the classification of malignant lymphomas |
topic |
ddc 660 bkl 50.21 |
topic_unstemmed |
ddc 660 bkl 50.21 |
topic_browse |
ddc 660 bkl 50.21 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s g sg a f af m c mc e b eb a f af f f ff m i mi s l sl m m mm f m fm v t vt a v av m z mz m b mb |
hierarchy_parent_title |
Dynamic measurement of stay-cable force using digital image techniques |
hierarchy_parent_id |
ELV003255476 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Dynamic measurement of stay-cable force using digital image techniques |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003255476 |
title |
Texture analysis and multiple-instance learning for the classification of malignant lymphomas |
ctrlnum |
(DE-627)ELV049389130 (ELSEVIER)S0169-2607(19)30205-6 |
title_full |
Texture analysis and multiple-instance learning for the classification of malignant lymphomas |
author_sort |
Lippi, Marco |
journal |
Dynamic measurement of stay-cable force using digital image techniques |
journalStr |
Dynamic measurement of stay-cable force using digital image techniques |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Lippi, Marco |
container_volume |
185 |
class |
660 VZ 50.21 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Lippi, Marco |
doi_str_mv |
10.1016/j.cmpb.2019.105153 |
dewey-full |
660 |
title_sort |
texture analysis and multiple-instance learning for the classification of malignant lymphomas |
title_auth |
Texture analysis and multiple-instance learning for the classification of malignant lymphomas |
abstract |
Highlights • Malignant lymphomas subtype classification with machine learning. • Texture features extracted from FDG-PET volumes of interest. • Multiple-instance learning SVM for patient-level categorization. • Random forests exploited for feature selection. |
abstractGer |
Highlights • Malignant lymphomas subtype classification with machine learning. • Texture features extracted from FDG-PET volumes of interest. • Multiple-instance learning SVM for patient-level categorization. • Random forests exploited for feature selection. |
abstract_unstemmed |
Highlights • Malignant lymphomas subtype classification with machine learning. • Texture features extracted from FDG-PET volumes of interest. • Multiple-instance learning SVM for patient-level categorization. • Random forests exploited for feature selection. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Texture analysis and multiple-instance learning for the classification of malignant lymphomas |
url |
https://doi.org/10.1016/j.cmpb.2019.105153 |
remote_bool |
true |
author2 |
Gianotti, Stefania Fama, Angelo Casali, Massimiliano Barbolini, Elisa Ferrari, Angela Fioroni, Federica Iori, Mauro Luminari, Stefano Menga, Massimo Merli, Francesco Trojani, Valeria Versari, Annibale Zanelli, Magda Bertolini, Marco |
author2Str |
Gianotti, Stefania Fama, Angelo Casali, Massimiliano Barbolini, Elisa Ferrari, Angela Fioroni, Federica Iori, Mauro Luminari, Stefano Menga, Massimo Merli, Francesco Trojani, Valeria Versari, Annibale Zanelli, Magda Bertolini, Marco |
ppnlink |
ELV003255476 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.cmpb.2019.105153 |
up_date |
2024-07-06T21:26:21.049Z |
_version_ |
1803866531220684800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049389130</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624153939.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cmpb.2019.105153</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000912.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049389130</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-2607(19)30205-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lippi, Marco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Texture analysis and multiple-instance learning for the classification of malignant lymphomas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Highlights • Malignant lymphomas subtype classification with machine learning. • Texture features extracted from FDG-PET volumes of interest. • Multiple-instance learning SVM for patient-level categorization. • Random forests exploited for feature selection.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gianotti, Stefania</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fama, Angelo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Casali, Massimiliano</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barbolini, Elisa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferrari, Angela</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fioroni, Federica</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iori, Mauro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luminari, Stefano</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Menga, Massimo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Merli, Francesco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trojani, Valeria</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Versari, Annibale</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zanelli, Magda</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bertolini, Marco</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Du, Wenkang ELSEVIER</subfield><subfield code="t">Dynamic measurement of stay-cable force using digital image techniques</subfield><subfield code="d">2019</subfield><subfield code="d">an international journal devoted to the development, implementation and exchange of computing methodology and software systems in biomedical research and medical practice</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV003255476</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:185</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.cmpb.2019.105153</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.21</subfield><subfield code="j">Messtechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">185</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4024982 |