Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019)
The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the commen...
Ausführliche Beschreibung
Autor*in: |
Levy, Elan J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Übergeordnetes Werk: |
Enthalten in: CME examination - 2014, the international multidisciplinary research and review journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:231 ; year:2020 ; day:1 ; month:03 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.quascirev.2019.106111 |
---|
Katalog-ID: |
ELV049462458 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV049462458 | ||
003 | DE-627 | ||
005 | 20230626024424.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200518s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.quascirev.2019.106111 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000919.pica |
035 | |a (DE-627)ELV049462458 | ||
035 | |a (ELSEVIER)S0277-3791(19)31084-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Levy, Elan J. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019) |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. | ||
520 | |a The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. | ||
700 | 1 | |a Sivan, Orit |4 oth | |
700 | 1 | |a Antler, Gilad |4 oth | |
700 | 1 | |a Stein, Mordechai |4 oth | |
700 | 1 | |a Lazar, Boaz |4 oth | |
700 | 1 | |a Yechieli, Yossi |4 oth | |
700 | 1 | |a Gavrieli, Ittai |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |t CME examination |d 2014 |d the international multidisciplinary research and review journal |g Amsterdam [u.a.] |w (DE-627)ELV012176508 |
773 | 1 | 8 | |g volume:231 |g year:2020 |g day:1 |g month:03 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.quascirev.2019.106111 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 231 |j 2020 |b 1 |c 0301 |h 0 |
author_variant |
e j l ej ejl |
---|---|
matchkey_str |
levyelanjsivanoritantlergiladsteinmordec:2020----:eltcarc21cmetnonsdmatiproreoslaeelnsmnadysmuestrtoitea |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2020 |
allfields |
10.1016/j.quascirev.2019.106111 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000919.pica (DE-627)ELV049462458 (ELSEVIER)S0277-3791(19)31084-4 DE-627 ger DE-627 rakwb eng 610 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Levy, Elan J. verfasserin aut Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019) 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. Sivan, Orit oth Antler, Gilad oth Stein, Mordechai oth Lazar, Boaz oth Yechieli, Yossi oth Gavrieli, Ittai oth Enthalten in Elsevier CME examination 2014 the international multidisciplinary research and review journal Amsterdam [u.a.] (DE-627)ELV012176508 volume:231 year:2020 day:1 month:03 pages:0 https://doi.org/10.1016/j.quascirev.2019.106111 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 231 2020 1 0301 0 |
spelling |
10.1016/j.quascirev.2019.106111 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000919.pica (DE-627)ELV049462458 (ELSEVIER)S0277-3791(19)31084-4 DE-627 ger DE-627 rakwb eng 610 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Levy, Elan J. verfasserin aut Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019) 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. Sivan, Orit oth Antler, Gilad oth Stein, Mordechai oth Lazar, Boaz oth Yechieli, Yossi oth Gavrieli, Ittai oth Enthalten in Elsevier CME examination 2014 the international multidisciplinary research and review journal Amsterdam [u.a.] (DE-627)ELV012176508 volume:231 year:2020 day:1 month:03 pages:0 https://doi.org/10.1016/j.quascirev.2019.106111 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 231 2020 1 0301 0 |
allfields_unstemmed |
10.1016/j.quascirev.2019.106111 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000919.pica (DE-627)ELV049462458 (ELSEVIER)S0277-3791(19)31084-4 DE-627 ger DE-627 rakwb eng 610 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Levy, Elan J. verfasserin aut Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019) 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. Sivan, Orit oth Antler, Gilad oth Stein, Mordechai oth Lazar, Boaz oth Yechieli, Yossi oth Gavrieli, Ittai oth Enthalten in Elsevier CME examination 2014 the international multidisciplinary research and review journal Amsterdam [u.a.] (DE-627)ELV012176508 volume:231 year:2020 day:1 month:03 pages:0 https://doi.org/10.1016/j.quascirev.2019.106111 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 231 2020 1 0301 0 |
allfieldsGer |
10.1016/j.quascirev.2019.106111 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000919.pica (DE-627)ELV049462458 (ELSEVIER)S0277-3791(19)31084-4 DE-627 ger DE-627 rakwb eng 610 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Levy, Elan J. verfasserin aut Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019) 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. Sivan, Orit oth Antler, Gilad oth Stein, Mordechai oth Lazar, Boaz oth Yechieli, Yossi oth Gavrieli, Ittai oth Enthalten in Elsevier CME examination 2014 the international multidisciplinary research and review journal Amsterdam [u.a.] (DE-627)ELV012176508 volume:231 year:2020 day:1 month:03 pages:0 https://doi.org/10.1016/j.quascirev.2019.106111 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 231 2020 1 0301 0 |
allfieldsSound |
10.1016/j.quascirev.2019.106111 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000919.pica (DE-627)ELV049462458 (ELSEVIER)S0277-3791(19)31084-4 DE-627 ger DE-627 rakwb eng 610 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Levy, Elan J. verfasserin aut Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019) 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. Sivan, Orit oth Antler, Gilad oth Stein, Mordechai oth Lazar, Boaz oth Yechieli, Yossi oth Gavrieli, Ittai oth Enthalten in Elsevier CME examination 2014 the international multidisciplinary research and review journal Amsterdam [u.a.] (DE-627)ELV012176508 volume:231 year:2020 day:1 month:03 pages:0 https://doi.org/10.1016/j.quascirev.2019.106111 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 231 2020 1 0301 0 |
language |
English |
source |
Enthalten in CME examination Amsterdam [u.a.] volume:231 year:2020 day:1 month:03 pages:0 |
sourceStr |
Enthalten in CME examination Amsterdam [u.a.] volume:231 year:2020 day:1 month:03 pages:0 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
CME examination |
authorswithroles_txt_mv |
Levy, Elan J. @@aut@@ Sivan, Orit @@oth@@ Antler, Gilad @@oth@@ Stein, Mordechai @@oth@@ Lazar, Boaz @@oth@@ Yechieli, Yossi @@oth@@ Gavrieli, Ittai @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV012176508 |
dewey-sort |
3610 |
id |
ELV049462458 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049462458</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626024424.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.quascirev.2019.106111</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000919.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049462458</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0277-3791(19)31084-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Levy, Elan J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sivan, Orit</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antler, Gilad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stein, Mordechai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lazar, Boaz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yechieli, Yossi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gavrieli, Ittai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="t">CME examination</subfield><subfield code="d">2014</subfield><subfield code="d">the international multidisciplinary research and review journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012176508</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:231</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.quascirev.2019.106111</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">231</subfield><subfield code="j">2020</subfield><subfield code="b">1</subfield><subfield code="c">0301</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Levy, Elan J. |
spellingShingle |
Levy, Elan J. ddc 610 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019) |
authorStr |
Levy, Elan J. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV012176508 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health 333 - Economics of land & energy |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019) |
topic |
ddc 610 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 |
topic_unstemmed |
ddc 610 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 |
topic_browse |
ddc 610 ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
o s os g a ga m s ms b l bl y y yy i g ig |
hierarchy_parent_title |
CME examination |
hierarchy_parent_id |
ELV012176508 |
dewey-tens |
610 - Medicine & health 330 - Economics |
hierarchy_top_title |
CME examination |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV012176508 |
title |
Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019) |
ctrlnum |
(DE-627)ELV049462458 (ELSEVIER)S0277-3791(19)31084-4 |
title_full |
Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019) |
author_sort |
Levy, Elan J. |
journal |
CME examination |
journalStr |
CME examination |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 300 - Social sciences |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Levy, Elan J. |
container_volume |
231 |
class |
610 VZ 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Levy, Elan J. |
doi_str_mv |
10.1016/j.quascirev.2019.106111 |
dewey-full |
610 333.7 |
title_sort |
reply to charrach (2019) comment on “mount sedom salt diapir - source for sulfate replenishment and gypsum supersaturation in the last glacial dead sea (lake lisan)” by levy et al. (2019) |
title_auth |
Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019) |
abstract |
The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. |
abstractGer |
The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. |
abstract_unstemmed |
The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_30 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 |
title_short |
Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019) |
url |
https://doi.org/10.1016/j.quascirev.2019.106111 |
remote_bool |
true |
author2 |
Sivan, Orit Antler, Gilad Stein, Mordechai Lazar, Boaz Yechieli, Yossi Gavrieli, Ittai |
author2Str |
Sivan, Orit Antler, Gilad Stein, Mordechai Lazar, Boaz Yechieli, Yossi Gavrieli, Ittai |
ppnlink |
ELV012176508 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.quascirev.2019.106111 |
up_date |
2024-07-06T21:39:26.992Z |
_version_ |
1803867355342700544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049462458</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626024424.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.quascirev.2019.106111</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000919.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049462458</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0277-3791(19)31084-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Levy, Elan J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reply to Charrach (2019) comment on “Mount Sedom salt diapir - Source for sulfate replenishment and gypsum supersaturation in the last glacial Dead Sea (Lake Lisan)” by Levy et al. (2019)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The main comment by Charrach (2019) on the Levy et al. (2019) paper is that the Sedom salt diapir could not have been a source for sulfate to Lake Lisan (last glacial Dead Sea), arguing that the dissolution of the salt diapir started following the onset of the Holocene Dead Sea. We refute the comment for the following reasons: (1) The nature of the unconformity between the salt diapir and the overlying sediments indicates that it emerged from the surface prior to the last glacial and was submerged in Lake Lisan; (2) The formation of a ∼40 m thick layer of dissolution residue (caprock) sitting on an almost flat dissolution unconformity surface (salt mirror) suggests that 600 m-to-800 m thick layer of Sedom Fm. was dissolved under phreatic settings. During most of the Holocene, the diapir has been subjected to vadose type dissolution which formed karst cutting through the caprock, salt mirror and rock-salt below; (3) Based on the Charrach (2019) hypothesis, estimated diapir uplift rates during the early Holocene would have required to be an order of magnitude higher than the measured and calculated rates for the present and Holocene, respectively, provided by other studies; (4) Na/Ca ratios from primary aragonite in the Lisan Fm. found at the vicinity of Mt. Sedom, as well as Na/Cl ratios, saturation state of halite and isotopic composition of chloride in the pore fluids from the deep Dead Sea Deep Drilling Project (DSDDP) core 5017-1-A, suggests significant dissolution of halite from Mt. Sedom into Lake Lisan. In addition to halite, dissolution of the next abundant evaporite mineral, anhydrite, resulted in mobilization of sulfate to the lake.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sivan, Orit</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Antler, Gilad</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stein, Mordechai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lazar, Boaz</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yechieli, Yossi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gavrieli, Ittai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="t">CME examination</subfield><subfield code="d">2014</subfield><subfield code="d">the international multidisciplinary research and review journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV012176508</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:231</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.quascirev.2019.106111</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">231</subfield><subfield code="j">2020</subfield><subfield code="b">1</subfield><subfield code="c">0301</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401026 |