Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize
Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can...
Ausführliche Beschreibung
Autor*in: |
Vogel, Christian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Übergeordnetes Werk: |
Enthalten in: SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota - Wang, Meimei ELSEVIER, 2018, an international journal for scientific research into the environment and its relationship with man, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:715 ; year:2020 ; day:1 ; month:05 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.scitotenv.2020.136895 |
---|
Katalog-ID: |
ELV049524488 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV049524488 | ||
003 | DE-627 | ||
005 | 20230626024545.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200518s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.scitotenv.2020.136895 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001228.pica |
035 | |a (DE-627)ELV049524488 | ||
035 | |a (ELSEVIER)S0048-9697(20)30405-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |a 610 |q VZ |
100 | 1 | |a Vogel, Christian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. | ||
520 | |a Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. | ||
700 | 1 | |a Sekine, Ryo |4 oth | |
700 | 1 | |a Huang, Jianyin |4 oth | |
700 | 1 | |a Steckenmesser, Daniel |4 oth | |
700 | 1 | |a Steffens, Diedrich |4 oth | |
700 | 1 | |a Huthwelker, Thomas |4 oth | |
700 | 1 | |a Borca, Camelia N. |4 oth | |
700 | 1 | |a Pradas del Real, Ana E. |4 oth | |
700 | 1 | |a Castillo-Michel, Hiram |4 oth | |
700 | 1 | |a Adam, Christian |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Wang, Meimei ELSEVIER |t SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |d 2018 |d an international journal for scientific research into the environment and its relationship with man |g Amsterdam [u.a.] |w (DE-627)ELV001360035 |
773 | 1 | 8 | |g volume:715 |g year:2020 |g day:1 |g month:05 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.scitotenv.2020.136895 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 715 |j 2020 |b 1 |c 0501 |h 0 |
author_variant |
c v cv |
---|---|
matchkey_str |
vogelchristiansekineryohuangjianyinsteck:2020----:fetoairfctoihbtrnirgnpceiteolnteil |
hierarchy_sort_str |
2020transfer abstract |
publishDate |
2020 |
allfields |
10.1016/j.scitotenv.2020.136895 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001228.pica (DE-627)ELV049524488 (ELSEVIER)S0048-9697(20)30405-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Vogel, Christian verfasserin aut Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. Sekine, Ryo oth Huang, Jianyin oth Steckenmesser, Daniel oth Steffens, Diedrich oth Huthwelker, Thomas oth Borca, Camelia N. oth Pradas del Real, Ana E. oth Castillo-Michel, Hiram oth Adam, Christian oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:715 year:2020 day:1 month:05 pages:0 https://doi.org/10.1016/j.scitotenv.2020.136895 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 715 2020 1 0501 0 |
spelling |
10.1016/j.scitotenv.2020.136895 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001228.pica (DE-627)ELV049524488 (ELSEVIER)S0048-9697(20)30405-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Vogel, Christian verfasserin aut Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. Sekine, Ryo oth Huang, Jianyin oth Steckenmesser, Daniel oth Steffens, Diedrich oth Huthwelker, Thomas oth Borca, Camelia N. oth Pradas del Real, Ana E. oth Castillo-Michel, Hiram oth Adam, Christian oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:715 year:2020 day:1 month:05 pages:0 https://doi.org/10.1016/j.scitotenv.2020.136895 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 715 2020 1 0501 0 |
allfields_unstemmed |
10.1016/j.scitotenv.2020.136895 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001228.pica (DE-627)ELV049524488 (ELSEVIER)S0048-9697(20)30405-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Vogel, Christian verfasserin aut Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. Sekine, Ryo oth Huang, Jianyin oth Steckenmesser, Daniel oth Steffens, Diedrich oth Huthwelker, Thomas oth Borca, Camelia N. oth Pradas del Real, Ana E. oth Castillo-Michel, Hiram oth Adam, Christian oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:715 year:2020 day:1 month:05 pages:0 https://doi.org/10.1016/j.scitotenv.2020.136895 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 715 2020 1 0501 0 |
allfieldsGer |
10.1016/j.scitotenv.2020.136895 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001228.pica (DE-627)ELV049524488 (ELSEVIER)S0048-9697(20)30405-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Vogel, Christian verfasserin aut Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. Sekine, Ryo oth Huang, Jianyin oth Steckenmesser, Daniel oth Steffens, Diedrich oth Huthwelker, Thomas oth Borca, Camelia N. oth Pradas del Real, Ana E. oth Castillo-Michel, Hiram oth Adam, Christian oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:715 year:2020 day:1 month:05 pages:0 https://doi.org/10.1016/j.scitotenv.2020.136895 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 715 2020 1 0501 0 |
allfieldsSound |
10.1016/j.scitotenv.2020.136895 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001228.pica (DE-627)ELV049524488 (ELSEVIER)S0048-9697(20)30405-8 DE-627 ger DE-627 rakwb eng 630 640 610 VZ Vogel, Christian verfasserin aut Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. Sekine, Ryo oth Huang, Jianyin oth Steckenmesser, Daniel oth Steffens, Diedrich oth Huthwelker, Thomas oth Borca, Camelia N. oth Pradas del Real, Ana E. oth Castillo-Michel, Hiram oth Adam, Christian oth Enthalten in Elsevier Science Wang, Meimei ELSEVIER SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota 2018 an international journal for scientific research into the environment and its relationship with man Amsterdam [u.a.] (DE-627)ELV001360035 volume:715 year:2020 day:1 month:05 pages:0 https://doi.org/10.1016/j.scitotenv.2020.136895 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA AR 715 2020 1 0501 0 |
language |
English |
source |
Enthalten in SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota Amsterdam [u.a.] volume:715 year:2020 day:1 month:05 pages:0 |
sourceStr |
Enthalten in SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota Amsterdam [u.a.] volume:715 year:2020 day:1 month:05 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
authorswithroles_txt_mv |
Vogel, Christian @@aut@@ Sekine, Ryo @@oth@@ Huang, Jianyin @@oth@@ Steckenmesser, Daniel @@oth@@ Steffens, Diedrich @@oth@@ Huthwelker, Thomas @@oth@@ Borca, Camelia N. @@oth@@ Pradas del Real, Ana E. @@oth@@ Castillo-Michel, Hiram @@oth@@ Adam, Christian @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV001360035 |
dewey-sort |
3630 |
id |
ELV049524488 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049524488</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626024545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scitotenv.2020.136895</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001228.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049524488</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0048-9697(20)30405-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vogel, Christian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sekine, Ryo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Jianyin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steckenmesser, Daniel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steffens, Diedrich</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huthwelker, Thomas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borca, Camelia N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pradas del Real, Ana E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Castillo-Michel, Hiram</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adam, Christian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Wang, Meimei ELSEVIER</subfield><subfield code="t">SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal for scientific research into the environment and its relationship with man</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001360035</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:715</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.scitotenv.2020.136895</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">715</subfield><subfield code="j">2020</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Vogel, Christian |
spellingShingle |
Vogel, Christian ddc 630 Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize |
authorStr |
Vogel, Christian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001360035 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
630 640 610 VZ Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize |
topic |
ddc 630 |
topic_unstemmed |
ddc 630 |
topic_browse |
ddc 630 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
r s rs j h jh d s ds d s ds t h th c n b cn cnb d r a e p drae draep h c m hcm c a ca |
hierarchy_parent_title |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
hierarchy_parent_id |
ELV001360035 |
dewey-tens |
630 - Agriculture 640 - Home & family management 610 - Medicine & health |
hierarchy_top_title |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001360035 |
title |
Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize |
ctrlnum |
(DE-627)ELV049524488 (ELSEVIER)S0048-9697(20)30405-8 |
title_full |
Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize |
author_sort |
Vogel, Christian |
journal |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
journalStr |
SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Vogel, Christian |
container_volume |
715 |
class |
630 640 610 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Vogel, Christian |
doi_str_mv |
10.1016/j.scitotenv.2020.136895 |
dewey-full |
630 640 610 |
title_sort |
effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize |
title_auth |
Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize |
abstract |
Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. |
abstractGer |
Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. |
abstract_unstemmed |
Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize |
url |
https://doi.org/10.1016/j.scitotenv.2020.136895 |
remote_bool |
true |
author2 |
Sekine, Ryo Huang, Jianyin Steckenmesser, Daniel Steffens, Diedrich Huthwelker, Thomas Borca, Camelia N. Pradas del Real, Ana E. Castillo-Michel, Hiram Adam, Christian |
author2Str |
Sekine, Ryo Huang, Jianyin Steckenmesser, Daniel Steffens, Diedrich Huthwelker, Thomas Borca, Camelia N. Pradas del Real, Ana E. Castillo-Michel, Hiram Adam, Christian |
ppnlink |
ELV001360035 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.scitotenv.2020.136895 |
up_date |
2024-07-06T21:49:34.283Z |
_version_ |
1803867992132419584 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049524488</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626024545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.scitotenv.2020.136895</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001228.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049524488</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0048-9697(20)30405-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vogel, Christian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammonium can enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and an ammonium sulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water-insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammonium in the soil resulted in a high amount of plant available ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammonium uptake, which mobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sekine, Ryo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Jianyin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steckenmesser, Daniel</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steffens, Diedrich</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huthwelker, Thomas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borca, Camelia N.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pradas del Real, Ana E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Castillo-Michel, Hiram</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adam, Christian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Wang, Meimei ELSEVIER</subfield><subfield code="t">SPG-56 from Sweet potato Zhongshu-1 delayed growth of tumor xenografts in nude mice by modulating gut microbiota</subfield><subfield code="d">2018</subfield><subfield code="d">an international journal for scientific research into the environment and its relationship with man</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001360035</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:715</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:1</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.scitotenv.2020.136895</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">715</subfield><subfield code="j">2020</subfield><subfield code="b">1</subfield><subfield code="c">0501</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401107 |