Global well-posedness theory for a class of coupled parabolic-elliptic systems
We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation proc...
Ausführliche Beschreibung
Autor*in: |
Malysheva, Tetyana [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
Coupled partial differential equations Coupled parabolic-elliptic systems |
---|
Übergeordnetes Werk: |
Enthalten in: In silico drug repurposing in COVID-19: A network-based analysis - Sibilio, Pasquale ELSEVIER, 2021, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:486 ; year:2020 ; number:2 ; day:15 ; month:06 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jmaa.2020.123923 |
---|
Katalog-ID: |
ELV049536826 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV049536826 | ||
003 | DE-627 | ||
005 | 20230626024559.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200518s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jmaa.2020.123923 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000927.pica |
035 | |a (DE-627)ELV049536826 | ||
035 | |a (ELSEVIER)S0022-247X(20)30085-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Malysheva, Tetyana |e verfasserin |4 aut | |
245 | 1 | 0 | |a Global well-posedness theory for a class of coupled parabolic-elliptic systems |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. | ||
520 | |a We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. | ||
650 | 7 | |a Coupled partial differential equations |2 Elsevier | |
650 | 7 | |a Thermo-chemo-poroelasticity |2 Elsevier | |
650 | 7 | |a Coupled parabolic-elliptic systems |2 Elsevier | |
650 | 7 | |a Coupled diffusion-deformation systems |2 Elsevier | |
650 | 7 | |a Well-posedness |2 Elsevier | |
700 | 1 | |a White, Luther W. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Sibilio, Pasquale ELSEVIER |t In silico drug repurposing in COVID-19: A network-based analysis |d 2021 |g Amsterdam [u.a.] |w (DE-627)ELV006634001 |
773 | 1 | 8 | |g volume:486 |g year:2020 |g number:2 |g day:15 |g month:06 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jmaa.2020.123923 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 486 |j 2020 |e 2 |b 15 |c 0615 |h 0 |
author_variant |
t m tm |
---|---|
matchkey_str |
malyshevatetyanawhitelutherw:2020----:lbleloensterfrcasfopeprb |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
44.40 |
publishDate |
2020 |
allfields |
10.1016/j.jmaa.2020.123923 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000927.pica (DE-627)ELV049536826 (ELSEVIER)S0022-247X(20)30085-8 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Malysheva, Tetyana verfasserin aut Global well-posedness theory for a class of coupled parabolic-elliptic systems 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. Coupled partial differential equations Elsevier Thermo-chemo-poroelasticity Elsevier Coupled parabolic-elliptic systems Elsevier Coupled diffusion-deformation systems Elsevier Well-posedness Elsevier White, Luther W. oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:486 year:2020 number:2 day:15 month:06 pages:0 https://doi.org/10.1016/j.jmaa.2020.123923 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 486 2020 2 15 0615 0 |
spelling |
10.1016/j.jmaa.2020.123923 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000927.pica (DE-627)ELV049536826 (ELSEVIER)S0022-247X(20)30085-8 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Malysheva, Tetyana verfasserin aut Global well-posedness theory for a class of coupled parabolic-elliptic systems 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. Coupled partial differential equations Elsevier Thermo-chemo-poroelasticity Elsevier Coupled parabolic-elliptic systems Elsevier Coupled diffusion-deformation systems Elsevier Well-posedness Elsevier White, Luther W. oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:486 year:2020 number:2 day:15 month:06 pages:0 https://doi.org/10.1016/j.jmaa.2020.123923 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 486 2020 2 15 0615 0 |
allfields_unstemmed |
10.1016/j.jmaa.2020.123923 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000927.pica (DE-627)ELV049536826 (ELSEVIER)S0022-247X(20)30085-8 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Malysheva, Tetyana verfasserin aut Global well-posedness theory for a class of coupled parabolic-elliptic systems 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. Coupled partial differential equations Elsevier Thermo-chemo-poroelasticity Elsevier Coupled parabolic-elliptic systems Elsevier Coupled diffusion-deformation systems Elsevier Well-posedness Elsevier White, Luther W. oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:486 year:2020 number:2 day:15 month:06 pages:0 https://doi.org/10.1016/j.jmaa.2020.123923 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 486 2020 2 15 0615 0 |
allfieldsGer |
10.1016/j.jmaa.2020.123923 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000927.pica (DE-627)ELV049536826 (ELSEVIER)S0022-247X(20)30085-8 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Malysheva, Tetyana verfasserin aut Global well-posedness theory for a class of coupled parabolic-elliptic systems 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. Coupled partial differential equations Elsevier Thermo-chemo-poroelasticity Elsevier Coupled parabolic-elliptic systems Elsevier Coupled diffusion-deformation systems Elsevier Well-posedness Elsevier White, Luther W. oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:486 year:2020 number:2 day:15 month:06 pages:0 https://doi.org/10.1016/j.jmaa.2020.123923 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 486 2020 2 15 0615 0 |
allfieldsSound |
10.1016/j.jmaa.2020.123923 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000927.pica (DE-627)ELV049536826 (ELSEVIER)S0022-247X(20)30085-8 DE-627 ger DE-627 rakwb eng 610 VZ 44.40 bkl Malysheva, Tetyana verfasserin aut Global well-posedness theory for a class of coupled parabolic-elliptic systems 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. Coupled partial differential equations Elsevier Thermo-chemo-poroelasticity Elsevier Coupled parabolic-elliptic systems Elsevier Coupled diffusion-deformation systems Elsevier Well-posedness Elsevier White, Luther W. oth Enthalten in Elsevier Sibilio, Pasquale ELSEVIER In silico drug repurposing in COVID-19: A network-based analysis 2021 Amsterdam [u.a.] (DE-627)ELV006634001 volume:486 year:2020 number:2 day:15 month:06 pages:0 https://doi.org/10.1016/j.jmaa.2020.123923 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA 44.40 Pharmazie Pharmazeutika VZ AR 486 2020 2 15 0615 0 |
language |
English |
source |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:486 year:2020 number:2 day:15 month:06 pages:0 |
sourceStr |
Enthalten in In silico drug repurposing in COVID-19: A network-based analysis Amsterdam [u.a.] volume:486 year:2020 number:2 day:15 month:06 pages:0 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
Coupled partial differential equations Thermo-chemo-poroelasticity Coupled parabolic-elliptic systems Coupled diffusion-deformation systems Well-posedness |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
In silico drug repurposing in COVID-19: A network-based analysis |
authorswithroles_txt_mv |
Malysheva, Tetyana @@aut@@ White, Luther W. @@oth@@ |
publishDateDaySort_date |
2020-01-15T00:00:00Z |
hierarchy_top_id |
ELV006634001 |
dewey-sort |
3610 |
id |
ELV049536826 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049536826</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626024559.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2020.123923</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000927.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049536826</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(20)30085-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Malysheva, Tetyana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global well-posedness theory for a class of coupled parabolic-elliptic systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coupled partial differential equations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermo-chemo-poroelasticity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coupled parabolic-elliptic systems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coupled diffusion-deformation systems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Well-posedness</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">White, Luther W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:486</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2020.123923</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">486</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0615</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Malysheva, Tetyana |
spellingShingle |
Malysheva, Tetyana ddc 610 bkl 44.40 Elsevier Coupled partial differential equations Elsevier Thermo-chemo-poroelasticity Elsevier Coupled parabolic-elliptic systems Elsevier Coupled diffusion-deformation systems Elsevier Well-posedness Global well-posedness theory for a class of coupled parabolic-elliptic systems |
authorStr |
Malysheva, Tetyana |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV006634001 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.40 bkl Global well-posedness theory for a class of coupled parabolic-elliptic systems Coupled partial differential equations Elsevier Thermo-chemo-poroelasticity Elsevier Coupled parabolic-elliptic systems Elsevier Coupled diffusion-deformation systems Elsevier Well-posedness Elsevier |
topic |
ddc 610 bkl 44.40 Elsevier Coupled partial differential equations Elsevier Thermo-chemo-poroelasticity Elsevier Coupled parabolic-elliptic systems Elsevier Coupled diffusion-deformation systems Elsevier Well-posedness |
topic_unstemmed |
ddc 610 bkl 44.40 Elsevier Coupled partial differential equations Elsevier Thermo-chemo-poroelasticity Elsevier Coupled parabolic-elliptic systems Elsevier Coupled diffusion-deformation systems Elsevier Well-posedness |
topic_browse |
ddc 610 bkl 44.40 Elsevier Coupled partial differential equations Elsevier Thermo-chemo-poroelasticity Elsevier Coupled parabolic-elliptic systems Elsevier Coupled diffusion-deformation systems Elsevier Well-posedness |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
l w w lw lww |
hierarchy_parent_title |
In silico drug repurposing in COVID-19: A network-based analysis |
hierarchy_parent_id |
ELV006634001 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
In silico drug repurposing in COVID-19: A network-based analysis |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV006634001 |
title |
Global well-posedness theory for a class of coupled parabolic-elliptic systems |
ctrlnum |
(DE-627)ELV049536826 (ELSEVIER)S0022-247X(20)30085-8 |
title_full |
Global well-posedness theory for a class of coupled parabolic-elliptic systems |
author_sort |
Malysheva, Tetyana |
journal |
In silico drug repurposing in COVID-19: A network-based analysis |
journalStr |
In silico drug repurposing in COVID-19: A network-based analysis |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Malysheva, Tetyana |
container_volume |
486 |
class |
610 VZ 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Malysheva, Tetyana |
doi_str_mv |
10.1016/j.jmaa.2020.123923 |
dewey-full |
610 |
title_sort |
global well-posedness theory for a class of coupled parabolic-elliptic systems |
title_auth |
Global well-posedness theory for a class of coupled parabolic-elliptic systems |
abstract |
We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. |
abstractGer |
We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. |
abstract_unstemmed |
We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-PHA |
container_issue |
2 |
title_short |
Global well-posedness theory for a class of coupled parabolic-elliptic systems |
url |
https://doi.org/10.1016/j.jmaa.2020.123923 |
remote_bool |
true |
author2 |
White, Luther W. |
author2Str |
White, Luther W. |
ppnlink |
ELV006634001 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.jmaa.2020.123923 |
up_date |
2024-07-06T21:51:28.868Z |
_version_ |
1803868112283500544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049536826</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626024559.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jmaa.2020.123923</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000927.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049536826</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-247X(20)30085-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Malysheva, Tetyana</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global well-posedness theory for a class of coupled parabolic-elliptic systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We consider a fully coupled system consisting of a parabolic equation, with boundary and initial conditions, and an abstract elliptic equation in a variational form with time as a parameter. Such systems appear in applications related to the modeling of coupled diffusion and elastic deformation processes in inhomogeneous porous media within a quasi-static assumption. We establish the global existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the system. The proof of this result involves the proposed pseudo-decoupling method which reduces the coupled system to an initial-boundary value problem for a single implicit equation and a refined approach to deriving a priori energy estimates based on component-wise contributions of system parameters to energy norms.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coupled partial differential equations</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thermo-chemo-poroelasticity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coupled parabolic-elliptic systems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coupled diffusion-deformation systems</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Well-posedness</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">White, Luther W.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Sibilio, Pasquale ELSEVIER</subfield><subfield code="t">In silico drug repurposing in COVID-19: A network-based analysis</subfield><subfield code="d">2021</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV006634001</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:486</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:2</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jmaa.2020.123923</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">486</subfield><subfield code="j">2020</subfield><subfield code="e">2</subfield><subfield code="b">15</subfield><subfield code="c">0615</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4012194 |