Concave distortion risk minimizing reinsurance design under adverse selection
This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the...
Ausführliche Beschreibung
Autor*in: |
Cheung, Ka Chun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
11 |
---|
Übergeordnetes Werk: |
Enthalten in: Type V secretion: From biogenesis to biotechnology - van Ulsen, Peter ELSEVIER, 2014transfer abstract, mathematics and economics, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:91 ; year:2020 ; pages:155-165 ; extent:11 |
Links: |
---|
DOI / URN: |
10.1016/j.insmatheco.2020.02.001 |
---|
Katalog-ID: |
ELV049699628 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV049699628 | ||
003 | DE-627 | ||
005 | 20230626024958.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200518s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.insmatheco.2020.02.001 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000945.pica |
035 | |a (DE-627)ELV049699628 | ||
035 | |a (ELSEVIER)S0167-6687(20)30017-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q VZ |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 50.32 |2 bkl | ||
084 | |a 50.16 |2 bkl | ||
100 | 1 | |a Cheung, Ka Chun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Concave distortion risk minimizing reinsurance design under adverse selection |
264 | 1 | |c 2020transfer abstract | |
300 | |a 11 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. | ||
520 | |a This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. | ||
650 | 7 | |a G22 |2 Elsevier | |
650 | 7 | |a G32 |2 Elsevier | |
700 | 1 | |a Phillip Yam, Sheung Chi |4 oth | |
700 | 1 | |a Yuen, Fei Lung |4 oth | |
700 | 1 | |a Zhang, Yiying |4 oth | |
773 | 0 | 8 | |i Enthalten in |n North Holland Publ. Co |a van Ulsen, Peter ELSEVIER |t Type V secretion: From biogenesis to biotechnology |d 2014transfer abstract |d mathematics and economics |g Amsterdam |w (DE-627)ELV022536558 |
773 | 1 | 8 | |g volume:91 |g year:2020 |g pages:155-165 |g extent:11 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.insmatheco.2020.02.001 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.32 |j Dynamik |j Schwingungslehre |x Technische Mechanik |q VZ |
936 | b | k | |a 50.16 |j Technische Zuverlässigkeit |j Instandhaltung |q VZ |
951 | |a AR | ||
952 | |d 91 |j 2020 |h 155-165 |g 11 |
author_variant |
k c c kc kcc |
---|---|
matchkey_str |
cheungkachunphillipyamsheungchiyuenfeilu:2020----:ocvdsotorsmnmznrisrneeinn |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
50.32 50.16 |
publishDate |
2020 |
allfields |
10.1016/j.insmatheco.2020.02.001 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000945.pica (DE-627)ELV049699628 (ELSEVIER)S0167-6687(20)30017-2 DE-627 ger DE-627 rakwb eng 570 VZ 004 VZ 50.32 bkl 50.16 bkl Cheung, Ka Chun verfasserin aut Concave distortion risk minimizing reinsurance design under adverse selection 2020transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. G22 Elsevier G32 Elsevier Phillip Yam, Sheung Chi oth Yuen, Fei Lung oth Zhang, Yiying oth Enthalten in North Holland Publ. Co van Ulsen, Peter ELSEVIER Type V secretion: From biogenesis to biotechnology 2014transfer abstract mathematics and economics Amsterdam (DE-627)ELV022536558 volume:91 year:2020 pages:155-165 extent:11 https://doi.org/10.1016/j.insmatheco.2020.02.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 91 2020 155-165 11 |
spelling |
10.1016/j.insmatheco.2020.02.001 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000945.pica (DE-627)ELV049699628 (ELSEVIER)S0167-6687(20)30017-2 DE-627 ger DE-627 rakwb eng 570 VZ 004 VZ 50.32 bkl 50.16 bkl Cheung, Ka Chun verfasserin aut Concave distortion risk minimizing reinsurance design under adverse selection 2020transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. G22 Elsevier G32 Elsevier Phillip Yam, Sheung Chi oth Yuen, Fei Lung oth Zhang, Yiying oth Enthalten in North Holland Publ. Co van Ulsen, Peter ELSEVIER Type V secretion: From biogenesis to biotechnology 2014transfer abstract mathematics and economics Amsterdam (DE-627)ELV022536558 volume:91 year:2020 pages:155-165 extent:11 https://doi.org/10.1016/j.insmatheco.2020.02.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 91 2020 155-165 11 |
allfields_unstemmed |
10.1016/j.insmatheco.2020.02.001 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000945.pica (DE-627)ELV049699628 (ELSEVIER)S0167-6687(20)30017-2 DE-627 ger DE-627 rakwb eng 570 VZ 004 VZ 50.32 bkl 50.16 bkl Cheung, Ka Chun verfasserin aut Concave distortion risk minimizing reinsurance design under adverse selection 2020transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. G22 Elsevier G32 Elsevier Phillip Yam, Sheung Chi oth Yuen, Fei Lung oth Zhang, Yiying oth Enthalten in North Holland Publ. Co van Ulsen, Peter ELSEVIER Type V secretion: From biogenesis to biotechnology 2014transfer abstract mathematics and economics Amsterdam (DE-627)ELV022536558 volume:91 year:2020 pages:155-165 extent:11 https://doi.org/10.1016/j.insmatheco.2020.02.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 91 2020 155-165 11 |
allfieldsGer |
10.1016/j.insmatheco.2020.02.001 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000945.pica (DE-627)ELV049699628 (ELSEVIER)S0167-6687(20)30017-2 DE-627 ger DE-627 rakwb eng 570 VZ 004 VZ 50.32 bkl 50.16 bkl Cheung, Ka Chun verfasserin aut Concave distortion risk minimizing reinsurance design under adverse selection 2020transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. G22 Elsevier G32 Elsevier Phillip Yam, Sheung Chi oth Yuen, Fei Lung oth Zhang, Yiying oth Enthalten in North Holland Publ. Co van Ulsen, Peter ELSEVIER Type V secretion: From biogenesis to biotechnology 2014transfer abstract mathematics and economics Amsterdam (DE-627)ELV022536558 volume:91 year:2020 pages:155-165 extent:11 https://doi.org/10.1016/j.insmatheco.2020.02.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 91 2020 155-165 11 |
allfieldsSound |
10.1016/j.insmatheco.2020.02.001 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000945.pica (DE-627)ELV049699628 (ELSEVIER)S0167-6687(20)30017-2 DE-627 ger DE-627 rakwb eng 570 VZ 004 VZ 50.32 bkl 50.16 bkl Cheung, Ka Chun verfasserin aut Concave distortion risk minimizing reinsurance design under adverse selection 2020transfer abstract 11 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. G22 Elsevier G32 Elsevier Phillip Yam, Sheung Chi oth Yuen, Fei Lung oth Zhang, Yiying oth Enthalten in North Holland Publ. Co van Ulsen, Peter ELSEVIER Type V secretion: From biogenesis to biotechnology 2014transfer abstract mathematics and economics Amsterdam (DE-627)ELV022536558 volume:91 year:2020 pages:155-165 extent:11 https://doi.org/10.1016/j.insmatheco.2020.02.001 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.32 Dynamik Schwingungslehre Technische Mechanik VZ 50.16 Technische Zuverlässigkeit Instandhaltung VZ AR 91 2020 155-165 11 |
language |
English |
source |
Enthalten in Type V secretion: From biogenesis to biotechnology Amsterdam volume:91 year:2020 pages:155-165 extent:11 |
sourceStr |
Enthalten in Type V secretion: From biogenesis to biotechnology Amsterdam volume:91 year:2020 pages:155-165 extent:11 |
format_phy_str_mv |
Article |
bklname |
Dynamik Schwingungslehre Technische Zuverlässigkeit Instandhaltung |
institution |
findex.gbv.de |
topic_facet |
G22 G32 |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Type V secretion: From biogenesis to biotechnology |
authorswithroles_txt_mv |
Cheung, Ka Chun @@aut@@ Phillip Yam, Sheung Chi @@oth@@ Yuen, Fei Lung @@oth@@ Zhang, Yiying @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV022536558 |
dewey-sort |
3570 |
id |
ELV049699628 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049699628</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626024958.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.insmatheco.2020.02.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000945.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049699628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-6687(20)30017-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheung, Ka Chun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Concave distortion risk minimizing reinsurance design under adverse selection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">G22</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">G32</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Phillip Yam, Sheung Chi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuen, Fei Lung</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yiying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North Holland Publ. Co</subfield><subfield code="a">van Ulsen, Peter ELSEVIER</subfield><subfield code="t">Type V secretion: From biogenesis to biotechnology</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="d">mathematics and economics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV022536558</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:91</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:155-165</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.insmatheco.2020.02.001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">91</subfield><subfield code="j">2020</subfield><subfield code="h">155-165</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
author |
Cheung, Ka Chun |
spellingShingle |
Cheung, Ka Chun ddc 570 ddc 004 bkl 50.32 bkl 50.16 Elsevier G22 Elsevier G32 Concave distortion risk minimizing reinsurance design under adverse selection |
authorStr |
Cheung, Ka Chun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV022536558 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 VZ 004 VZ 50.32 bkl 50.16 bkl Concave distortion risk minimizing reinsurance design under adverse selection G22 Elsevier G32 Elsevier |
topic |
ddc 570 ddc 004 bkl 50.32 bkl 50.16 Elsevier G22 Elsevier G32 |
topic_unstemmed |
ddc 570 ddc 004 bkl 50.32 bkl 50.16 Elsevier G22 Elsevier G32 |
topic_browse |
ddc 570 ddc 004 bkl 50.32 bkl 50.16 Elsevier G22 Elsevier G32 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y s c p ysc yscp f l y fl fly y z yz |
hierarchy_parent_title |
Type V secretion: From biogenesis to biotechnology |
hierarchy_parent_id |
ELV022536558 |
dewey-tens |
570 - Life sciences; biology 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Type V secretion: From biogenesis to biotechnology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV022536558 |
title |
Concave distortion risk minimizing reinsurance design under adverse selection |
ctrlnum |
(DE-627)ELV049699628 (ELSEVIER)S0167-6687(20)30017-2 |
title_full |
Concave distortion risk minimizing reinsurance design under adverse selection |
author_sort |
Cheung, Ka Chun |
journal |
Type V secretion: From biogenesis to biotechnology |
journalStr |
Type V secretion: From biogenesis to biotechnology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
155 |
author_browse |
Cheung, Ka Chun |
container_volume |
91 |
physical |
11 |
class |
570 VZ 004 VZ 50.32 bkl 50.16 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Cheung, Ka Chun |
doi_str_mv |
10.1016/j.insmatheco.2020.02.001 |
dewey-full |
570 004 |
title_sort |
concave distortion risk minimizing reinsurance design under adverse selection |
title_auth |
Concave distortion risk minimizing reinsurance design under adverse selection |
abstract |
This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. |
abstractGer |
This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. |
abstract_unstemmed |
This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Concave distortion risk minimizing reinsurance design under adverse selection |
url |
https://doi.org/10.1016/j.insmatheco.2020.02.001 |
remote_bool |
true |
author2 |
Phillip Yam, Sheung Chi Yuen, Fei Lung Zhang, Yiying |
author2Str |
Phillip Yam, Sheung Chi Yuen, Fei Lung Zhang, Yiying |
ppnlink |
ELV022536558 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.insmatheco.2020.02.001 |
up_date |
2024-07-06T22:18:22.362Z |
_version_ |
1803869804154585088 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV049699628</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626024958.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.insmatheco.2020.02.001</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000945.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV049699628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-6687(20)30017-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheung, Ka Chun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Concave distortion risk minimizing reinsurance design under adverse selection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">11</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">G22</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">G32</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Phillip Yam, Sheung Chi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yuen, Fei Lung</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yiying</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North Holland Publ. Co</subfield><subfield code="a">van Ulsen, Peter ELSEVIER</subfield><subfield code="t">Type V secretion: From biogenesis to biotechnology</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="d">mathematics and economics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV022536558</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:91</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:155-165</subfield><subfield code="g">extent:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.insmatheco.2020.02.001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.32</subfield><subfield code="j">Dynamik</subfield><subfield code="j">Schwingungslehre</subfield><subfield code="x">Technische Mechanik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">91</subfield><subfield code="j">2020</subfield><subfield code="h">155-165</subfield><subfield code="g">11</subfield></datafield></record></collection>
|
score |
7.4032135 |