Numerical analysis of a contact problem with wear
This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some pr...
Ausführliche Beschreibung
Autor*in: |
Han, Danfu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
10 |
---|
Übergeordnetes Werk: |
Enthalten in: Growth and welfare implications of sector-specific innovations - Güner, İlhan ELSEVIER, 2022, an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:79 ; year:2020 ; number:10 ; day:15 ; month:05 ; pages:2942-2951 ; extent:10 |
Links: |
---|
DOI / URN: |
10.1016/j.camwa.2019.12.027 |
---|
Katalog-ID: |
ELV04995167X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV04995167X | ||
003 | DE-627 | ||
005 | 20230626025506.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200518s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.camwa.2019.12.027 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000970.pica |
035 | |a (DE-627)ELV04995167X | ||
035 | |a (ELSEVIER)S0898-1221(20)30001-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |q VZ |
084 | |a 83.03 |2 bkl | ||
084 | |a 83.10 |2 bkl | ||
100 | 1 | |a Han, Danfu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical analysis of a contact problem with wear |
264 | 1 | |c 2020transfer abstract | |
300 | |a 10 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. | ||
520 | |a This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. | ||
650 | 7 | |a Variational inequality |2 Elsevier | |
650 | 7 | |a Numerical methods |2 Elsevier | |
650 | 7 | |a Quasistatic contact problem |2 Elsevier | |
650 | 7 | |a Optimal order error estimate |2 Elsevier | |
700 | 1 | |a Han, Weimin |4 oth | |
700 | 1 | |a Jureczka, Michal |4 oth | |
700 | 1 | |a Ochal, Anna |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Güner, İlhan ELSEVIER |t Growth and welfare implications of sector-specific innovations |d 2022 |d an international journal |g Amsterdam [u.a.] |w (DE-627)ELV008987521 |
773 | 1 | 8 | |g volume:79 |g year:2020 |g number:10 |g day:15 |g month:05 |g pages:2942-2951 |g extent:10 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.camwa.2019.12.027 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 83.03 |j Methoden und Techniken der Volkswirtschaft |q VZ |
936 | b | k | |a 83.10 |j Wirtschaftstheorie: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 79 |j 2020 |e 10 |b 15 |c 0515 |h 2942-2951 |g 10 |
author_variant |
d h dh |
---|---|
matchkey_str |
handanfuhanweiminjureczkamichalochalanna:2020----:ueiaaayioaotcpo |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
83.03 83.10 |
publishDate |
2020 |
allfields |
10.1016/j.camwa.2019.12.027 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000970.pica (DE-627)ELV04995167X (ELSEVIER)S0898-1221(20)30001-8 DE-627 ger DE-627 rakwb eng 330 VZ 83.03 bkl 83.10 bkl Han, Danfu verfasserin aut Numerical analysis of a contact problem with wear 2020transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. Variational inequality Elsevier Numerical methods Elsevier Quasistatic contact problem Elsevier Optimal order error estimate Elsevier Han, Weimin oth Jureczka, Michal oth Ochal, Anna oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:79 year:2020 number:10 day:15 month:05 pages:2942-2951 extent:10 https://doi.org/10.1016/j.camwa.2019.12.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 79 2020 10 15 0515 2942-2951 10 |
spelling |
10.1016/j.camwa.2019.12.027 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000970.pica (DE-627)ELV04995167X (ELSEVIER)S0898-1221(20)30001-8 DE-627 ger DE-627 rakwb eng 330 VZ 83.03 bkl 83.10 bkl Han, Danfu verfasserin aut Numerical analysis of a contact problem with wear 2020transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. Variational inequality Elsevier Numerical methods Elsevier Quasistatic contact problem Elsevier Optimal order error estimate Elsevier Han, Weimin oth Jureczka, Michal oth Ochal, Anna oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:79 year:2020 number:10 day:15 month:05 pages:2942-2951 extent:10 https://doi.org/10.1016/j.camwa.2019.12.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 79 2020 10 15 0515 2942-2951 10 |
allfields_unstemmed |
10.1016/j.camwa.2019.12.027 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000970.pica (DE-627)ELV04995167X (ELSEVIER)S0898-1221(20)30001-8 DE-627 ger DE-627 rakwb eng 330 VZ 83.03 bkl 83.10 bkl Han, Danfu verfasserin aut Numerical analysis of a contact problem with wear 2020transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. Variational inequality Elsevier Numerical methods Elsevier Quasistatic contact problem Elsevier Optimal order error estimate Elsevier Han, Weimin oth Jureczka, Michal oth Ochal, Anna oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:79 year:2020 number:10 day:15 month:05 pages:2942-2951 extent:10 https://doi.org/10.1016/j.camwa.2019.12.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 79 2020 10 15 0515 2942-2951 10 |
allfieldsGer |
10.1016/j.camwa.2019.12.027 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000970.pica (DE-627)ELV04995167X (ELSEVIER)S0898-1221(20)30001-8 DE-627 ger DE-627 rakwb eng 330 VZ 83.03 bkl 83.10 bkl Han, Danfu verfasserin aut Numerical analysis of a contact problem with wear 2020transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. Variational inequality Elsevier Numerical methods Elsevier Quasistatic contact problem Elsevier Optimal order error estimate Elsevier Han, Weimin oth Jureczka, Michal oth Ochal, Anna oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:79 year:2020 number:10 day:15 month:05 pages:2942-2951 extent:10 https://doi.org/10.1016/j.camwa.2019.12.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 79 2020 10 15 0515 2942-2951 10 |
allfieldsSound |
10.1016/j.camwa.2019.12.027 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000970.pica (DE-627)ELV04995167X (ELSEVIER)S0898-1221(20)30001-8 DE-627 ger DE-627 rakwb eng 330 VZ 83.03 bkl 83.10 bkl Han, Danfu verfasserin aut Numerical analysis of a contact problem with wear 2020transfer abstract 10 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. Variational inequality Elsevier Numerical methods Elsevier Quasistatic contact problem Elsevier Optimal order error estimate Elsevier Han, Weimin oth Jureczka, Michal oth Ochal, Anna oth Enthalten in Elsevier Science Güner, İlhan ELSEVIER Growth and welfare implications of sector-specific innovations 2022 an international journal Amsterdam [u.a.] (DE-627)ELV008987521 volume:79 year:2020 number:10 day:15 month:05 pages:2942-2951 extent:10 https://doi.org/10.1016/j.camwa.2019.12.027 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 83.03 Methoden und Techniken der Volkswirtschaft VZ 83.10 Wirtschaftstheorie: Allgemeines VZ AR 79 2020 10 15 0515 2942-2951 10 |
language |
English |
source |
Enthalten in Growth and welfare implications of sector-specific innovations Amsterdam [u.a.] volume:79 year:2020 number:10 day:15 month:05 pages:2942-2951 extent:10 |
sourceStr |
Enthalten in Growth and welfare implications of sector-specific innovations Amsterdam [u.a.] volume:79 year:2020 number:10 day:15 month:05 pages:2942-2951 extent:10 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Volkswirtschaft Wirtschaftstheorie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Variational inequality Numerical methods Quasistatic contact problem Optimal order error estimate |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
Growth and welfare implications of sector-specific innovations |
authorswithroles_txt_mv |
Han, Danfu @@aut@@ Han, Weimin @@oth@@ Jureczka, Michal @@oth@@ Ochal, Anna @@oth@@ |
publishDateDaySort_date |
2020-01-15T00:00:00Z |
hierarchy_top_id |
ELV008987521 |
dewey-sort |
3330 |
id |
ELV04995167X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV04995167X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626025506.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.camwa.2019.12.027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000970.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV04995167X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0898-1221(20)30001-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Han, Danfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical analysis of a contact problem with wear</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variational inequality</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical methods</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quasistatic contact problem</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimal order error estimate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Weimin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jureczka, Michal</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ochal, Anna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Güner, İlhan ELSEVIER</subfield><subfield code="t">Growth and welfare implications of sector-specific innovations</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008987521</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10</subfield><subfield code="g">day:15</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2942-2951</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.camwa.2019.12.027</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.03</subfield><subfield code="j">Methoden und Techniken der Volkswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.10</subfield><subfield code="j">Wirtschaftstheorie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2020</subfield><subfield code="e">10</subfield><subfield code="b">15</subfield><subfield code="c">0515</subfield><subfield code="h">2942-2951</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
author |
Han, Danfu |
spellingShingle |
Han, Danfu ddc 330 bkl 83.03 bkl 83.10 Elsevier Variational inequality Elsevier Numerical methods Elsevier Quasistatic contact problem Elsevier Optimal order error estimate Numerical analysis of a contact problem with wear |
authorStr |
Han, Danfu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008987521 |
format |
electronic Article |
dewey-ones |
330 - Economics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
330 VZ 83.03 bkl 83.10 bkl Numerical analysis of a contact problem with wear Variational inequality Elsevier Numerical methods Elsevier Quasistatic contact problem Elsevier Optimal order error estimate Elsevier |
topic |
ddc 330 bkl 83.03 bkl 83.10 Elsevier Variational inequality Elsevier Numerical methods Elsevier Quasistatic contact problem Elsevier Optimal order error estimate |
topic_unstemmed |
ddc 330 bkl 83.03 bkl 83.10 Elsevier Variational inequality Elsevier Numerical methods Elsevier Quasistatic contact problem Elsevier Optimal order error estimate |
topic_browse |
ddc 330 bkl 83.03 bkl 83.10 Elsevier Variational inequality Elsevier Numerical methods Elsevier Quasistatic contact problem Elsevier Optimal order error estimate |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
w h wh m j mj a o ao |
hierarchy_parent_title |
Growth and welfare implications of sector-specific innovations |
hierarchy_parent_id |
ELV008987521 |
dewey-tens |
330 - Economics |
hierarchy_top_title |
Growth and welfare implications of sector-specific innovations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008987521 |
title |
Numerical analysis of a contact problem with wear |
ctrlnum |
(DE-627)ELV04995167X (ELSEVIER)S0898-1221(20)30001-8 |
title_full |
Numerical analysis of a contact problem with wear |
author_sort |
Han, Danfu |
journal |
Growth and welfare implications of sector-specific innovations |
journalStr |
Growth and welfare implications of sector-specific innovations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
2942 |
author_browse |
Han, Danfu |
container_volume |
79 |
physical |
10 |
class |
330 VZ 83.03 bkl 83.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Han, Danfu |
doi_str_mv |
10.1016/j.camwa.2019.12.027 |
dewey-full |
330 |
title_sort |
numerical analysis of a contact problem with wear |
title_auth |
Numerical analysis of a contact problem with wear |
abstract |
This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. |
abstractGer |
This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. |
abstract_unstemmed |
This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
container_issue |
10 |
title_short |
Numerical analysis of a contact problem with wear |
url |
https://doi.org/10.1016/j.camwa.2019.12.027 |
remote_bool |
true |
author2 |
Han, Weimin Jureczka, Michal Ochal, Anna |
author2Str |
Han, Weimin Jureczka, Michal Ochal, Anna |
ppnlink |
ELV008987521 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth |
doi_str |
10.1016/j.camwa.2019.12.027 |
up_date |
2024-07-06T22:59:25.600Z |
_version_ |
1803872387047882752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV04995167X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626025506.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.camwa.2019.12.027</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000000970.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV04995167X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0898-1221(20)30001-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">83.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Han, Danfu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical analysis of a contact problem with wear</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">10</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper represents a sequel to Jureczka and Ochal (2019) where numerical solution of a quasistatic contact problem is considered for an elastic body in frictional contact with a moving foundation. The model takes into account wear of the contact surface of the body caused by the friction. Some preliminary error analysis for a fully discrete approximation of the contact problem was provided in Jureczka and Ochal (2019). In this paper, we consider a more general fully discrete numerical scheme for the contact problem, derive optimal order error bounds and present computer simulation results showing that the numerical convergence orders match the theoretical predictions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variational inequality</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical methods</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quasistatic contact problem</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Optimal order error estimate</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Weimin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jureczka, Michal</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ochal, Anna</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Güner, İlhan ELSEVIER</subfield><subfield code="t">Growth and welfare implications of sector-specific innovations</subfield><subfield code="d">2022</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008987521</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:79</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:10</subfield><subfield code="g">day:15</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2942-2951</subfield><subfield code="g">extent:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.camwa.2019.12.027</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.03</subfield><subfield code="j">Methoden und Techniken der Volkswirtschaft</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">83.10</subfield><subfield code="j">Wirtschaftstheorie: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">79</subfield><subfield code="j">2020</subfield><subfield code="e">10</subfield><subfield code="b">15</subfield><subfield code="c">0515</subfield><subfield code="h">2942-2951</subfield><subfield code="g">10</subfield></datafield></record></collection>
|
score |
7.401019 |