Chelator-mediated biomimetic degradation of cellulose and chitin
Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of ce...
Ausführliche Beschreibung
Autor*in: |
Liu, Jianzhao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor - Penchovsky, Robert ELSEVIER, 2019, structure, function and interactions, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:153 ; year:2020 ; day:15 ; month:06 ; pages:433-440 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.ijbiomac.2020.02.262 |
---|
Katalog-ID: |
ELV050167162 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV050167162 | ||
003 | DE-627 | ||
005 | 20230626025944.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200518s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijbiomac.2020.02.262 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001717.pica |
035 | |a (DE-627)ELV050167162 | ||
035 | |a (ELSEVIER)S0141-8130(19)40231-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 610 |q VZ |
084 | |a 58.30 |2 bkl | ||
084 | |a 50.22 |2 bkl | ||
084 | |a 44.09 |2 bkl | ||
100 | 1 | |a Liu, Jianzhao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Chelator-mediated biomimetic degradation of cellulose and chitin |
264 | 1 | |c 2020transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. | ||
520 | |a Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. | ||
700 | 1 | |a Zhu, Yuan |4 oth | |
700 | 1 | |a Wang, Chao |4 oth | |
700 | 1 | |a Goodell, Barry |4 oth | |
700 | 1 | |a Esker, Alan R. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Penchovsky, Robert ELSEVIER |t Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor |d 2019 |d structure, function and interactions |g New York, NY [u.a.] |w (DE-627)ELV002200198 |
773 | 1 | 8 | |g volume:153 |g year:2020 |g day:15 |g month:06 |g pages:433-440 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ijbiomac.2020.02.262 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 58.30 |j Biotechnologie |q VZ |
936 | b | k | |a 50.22 |j Sensorik |q VZ |
936 | b | k | |a 44.09 |j Medizintechnik |q VZ |
951 | |a AR | ||
952 | |d 153 |j 2020 |b 15 |c 0615 |h 433-440 |g 8 |
author_variant |
j l jl |
---|---|
matchkey_str |
liujianzhaozhuyuanwangchaogoodellbarryes:2020----:hltreitdimmtcerdtoocl |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
58.30 50.22 44.09 |
publishDate |
2020 |
allfields |
10.1016/j.ijbiomac.2020.02.262 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001717.pica (DE-627)ELV050167162 (ELSEVIER)S0141-8130(19)40231-6 DE-627 ger DE-627 rakwb eng 570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl Liu, Jianzhao verfasserin aut Chelator-mediated biomimetic degradation of cellulose and chitin 2020transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. Zhu, Yuan oth Wang, Chao oth Goodell, Barry oth Esker, Alan R. oth Enthalten in Elsevier Penchovsky, Robert ELSEVIER Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor 2019 structure, function and interactions New York, NY [u.a.] (DE-627)ELV002200198 volume:153 year:2020 day:15 month:06 pages:433-440 extent:8 https://doi.org/10.1016/j.ijbiomac.2020.02.262 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.30 Biotechnologie VZ 50.22 Sensorik VZ 44.09 Medizintechnik VZ AR 153 2020 15 0615 433-440 8 |
spelling |
10.1016/j.ijbiomac.2020.02.262 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001717.pica (DE-627)ELV050167162 (ELSEVIER)S0141-8130(19)40231-6 DE-627 ger DE-627 rakwb eng 570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl Liu, Jianzhao verfasserin aut Chelator-mediated biomimetic degradation of cellulose and chitin 2020transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. Zhu, Yuan oth Wang, Chao oth Goodell, Barry oth Esker, Alan R. oth Enthalten in Elsevier Penchovsky, Robert ELSEVIER Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor 2019 structure, function and interactions New York, NY [u.a.] (DE-627)ELV002200198 volume:153 year:2020 day:15 month:06 pages:433-440 extent:8 https://doi.org/10.1016/j.ijbiomac.2020.02.262 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.30 Biotechnologie VZ 50.22 Sensorik VZ 44.09 Medizintechnik VZ AR 153 2020 15 0615 433-440 8 |
allfields_unstemmed |
10.1016/j.ijbiomac.2020.02.262 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001717.pica (DE-627)ELV050167162 (ELSEVIER)S0141-8130(19)40231-6 DE-627 ger DE-627 rakwb eng 570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl Liu, Jianzhao verfasserin aut Chelator-mediated biomimetic degradation of cellulose and chitin 2020transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. Zhu, Yuan oth Wang, Chao oth Goodell, Barry oth Esker, Alan R. oth Enthalten in Elsevier Penchovsky, Robert ELSEVIER Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor 2019 structure, function and interactions New York, NY [u.a.] (DE-627)ELV002200198 volume:153 year:2020 day:15 month:06 pages:433-440 extent:8 https://doi.org/10.1016/j.ijbiomac.2020.02.262 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.30 Biotechnologie VZ 50.22 Sensorik VZ 44.09 Medizintechnik VZ AR 153 2020 15 0615 433-440 8 |
allfieldsGer |
10.1016/j.ijbiomac.2020.02.262 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001717.pica (DE-627)ELV050167162 (ELSEVIER)S0141-8130(19)40231-6 DE-627 ger DE-627 rakwb eng 570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl Liu, Jianzhao verfasserin aut Chelator-mediated biomimetic degradation of cellulose and chitin 2020transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. Zhu, Yuan oth Wang, Chao oth Goodell, Barry oth Esker, Alan R. oth Enthalten in Elsevier Penchovsky, Robert ELSEVIER Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor 2019 structure, function and interactions New York, NY [u.a.] (DE-627)ELV002200198 volume:153 year:2020 day:15 month:06 pages:433-440 extent:8 https://doi.org/10.1016/j.ijbiomac.2020.02.262 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.30 Biotechnologie VZ 50.22 Sensorik VZ 44.09 Medizintechnik VZ AR 153 2020 15 0615 433-440 8 |
allfieldsSound |
10.1016/j.ijbiomac.2020.02.262 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001717.pica (DE-627)ELV050167162 (ELSEVIER)S0141-8130(19)40231-6 DE-627 ger DE-627 rakwb eng 570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl Liu, Jianzhao verfasserin aut Chelator-mediated biomimetic degradation of cellulose and chitin 2020transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. Zhu, Yuan oth Wang, Chao oth Goodell, Barry oth Esker, Alan R. oth Enthalten in Elsevier Penchovsky, Robert ELSEVIER Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor 2019 structure, function and interactions New York, NY [u.a.] (DE-627)ELV002200198 volume:153 year:2020 day:15 month:06 pages:433-440 extent:8 https://doi.org/10.1016/j.ijbiomac.2020.02.262 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 58.30 Biotechnologie VZ 50.22 Sensorik VZ 44.09 Medizintechnik VZ AR 153 2020 15 0615 433-440 8 |
language |
English |
source |
Enthalten in Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor New York, NY [u.a.] volume:153 year:2020 day:15 month:06 pages:433-440 extent:8 |
sourceStr |
Enthalten in Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor New York, NY [u.a.] volume:153 year:2020 day:15 month:06 pages:433-440 extent:8 |
format_phy_str_mv |
Article |
bklname |
Biotechnologie Sensorik Medizintechnik |
institution |
findex.gbv.de |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor |
authorswithroles_txt_mv |
Liu, Jianzhao @@aut@@ Zhu, Yuan @@oth@@ Wang, Chao @@oth@@ Goodell, Barry @@oth@@ Esker, Alan R. @@oth@@ |
publishDateDaySort_date |
2020-01-15T00:00:00Z |
hierarchy_top_id |
ELV002200198 |
dewey-sort |
3570 |
id |
ELV050167162 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV050167162</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626025944.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijbiomac.2020.02.262</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001717.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV050167162</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-8130(19)40231-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Jianzhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chelator-mediated biomimetic degradation of cellulose and chitin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Yuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goodell, Barry</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Esker, Alan R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Penchovsky, Robert ELSEVIER</subfield><subfield code="t">Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor</subfield><subfield code="d">2019</subfield><subfield code="d">structure, function and interactions</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV002200198</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:153</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:433-440</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijbiomac.2020.02.262</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="j">Biotechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">153</subfield><subfield code="j">2020</subfield><subfield code="b">15</subfield><subfield code="c">0615</subfield><subfield code="h">433-440</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
author |
Liu, Jianzhao |
spellingShingle |
Liu, Jianzhao ddc 570 bkl 58.30 bkl 50.22 bkl 44.09 Chelator-mediated biomimetic degradation of cellulose and chitin |
authorStr |
Liu, Jianzhao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002200198 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl Chelator-mediated biomimetic degradation of cellulose and chitin |
topic |
ddc 570 bkl 58.30 bkl 50.22 bkl 44.09 |
topic_unstemmed |
ddc 570 bkl 58.30 bkl 50.22 bkl 44.09 |
topic_browse |
ddc 570 bkl 58.30 bkl 50.22 bkl 44.09 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y z yz c w cw b g bg a r e ar are |
hierarchy_parent_title |
Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor |
hierarchy_parent_id |
ELV002200198 |
dewey-tens |
570 - Life sciences; biology 610 - Medicine & health |
hierarchy_top_title |
Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002200198 |
title |
Chelator-mediated biomimetic degradation of cellulose and chitin |
ctrlnum |
(DE-627)ELV050167162 (ELSEVIER)S0141-8130(19)40231-6 |
title_full |
Chelator-mediated biomimetic degradation of cellulose and chitin |
author_sort |
Liu, Jianzhao |
journal |
Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor |
journalStr |
Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
433 |
author_browse |
Liu, Jianzhao |
container_volume |
153 |
physical |
8 |
class |
570 610 VZ 58.30 bkl 50.22 bkl 44.09 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Jianzhao |
doi_str_mv |
10.1016/j.ijbiomac.2020.02.262 |
dewey-full |
570 610 |
title_sort |
chelator-mediated biomimetic degradation of cellulose and chitin |
title_auth |
Chelator-mediated biomimetic degradation of cellulose and chitin |
abstract |
Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. |
abstractGer |
Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. |
abstract_unstemmed |
Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Chelator-mediated biomimetic degradation of cellulose and chitin |
url |
https://doi.org/10.1016/j.ijbiomac.2020.02.262 |
remote_bool |
true |
author2 |
Zhu, Yuan Wang, Chao Goodell, Barry Esker, Alan R. |
author2Str |
Zhu, Yuan Wang, Chao Goodell, Barry Esker, Alan R. |
ppnlink |
ELV002200198 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.ijbiomac.2020.02.262 |
up_date |
2024-07-06T16:47:41.351Z |
_version_ |
1803848999346634752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV050167162</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626025944.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200518s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijbiomac.2020.02.262</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001717.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV050167162</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-8130(19)40231-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Jianzhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chelator-mediated biomimetic degradation of cellulose and chitin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Yuan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goodell, Barry</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Esker, Alan R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Penchovsky, Robert ELSEVIER</subfield><subfield code="t">Automated DNA hybridization transfer with movable super-paramagnetic microbeads in a microflow reactor</subfield><subfield code="d">2019</subfield><subfield code="d">structure, function and interactions</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV002200198</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:153</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:15</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:433-440</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ijbiomac.2020.02.262</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.30</subfield><subfield code="j">Biotechnologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.09</subfield><subfield code="j">Medizintechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">153</subfield><subfield code="j">2020</subfield><subfield code="b">15</subfield><subfield code="c">0615</subfield><subfield code="h">433-440</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
score |
7.4013557 |