In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency
Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA...
Ausführliche Beschreibung
Autor*in: |
Tan, Lei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method - Xiao, Hong ELSEVIER, 2013, the international journal on the science and technology of electrochemical energy systems, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:463 ; year:2020 ; day:1 ; month:07 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jpowsour.2020.228178 |
---|
Katalog-ID: |
ELV050252739 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV050252739 | ||
003 | DE-627 | ||
005 | 20230626030138.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200625s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jpowsour.2020.228178 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001005.pica |
035 | |a (DE-627)ELV050252739 | ||
035 | |a (ELSEVIER)S0378-7753(20)30481-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q VZ |
084 | |a 50.92 |2 bkl | ||
100 | 1 | |a Tan, Lei |e verfasserin |4 aut | |
245 | 1 | 8 | |a In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. | ||
520 | |a Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. | ||
650 | 7 | |a 3D lithiophilic framework |2 Elsevier | |
650 | 7 | |a Li metal batteries |2 Elsevier | |
650 | 7 | |a Li2O-Homogenized Li+ flux |2 Elsevier | |
650 | 7 | |a Li dendrite |2 Elsevier | |
650 | 7 | |a Li storage host |2 Elsevier | |
700 | 1 | |a Li, Xinhai |4 oth | |
700 | 1 | |a Cheng, Meng |4 oth | |
700 | 1 | |a Liu, Tiancheng |4 oth | |
700 | 1 | |a Wang, Zhixing |4 oth | |
700 | 1 | |a Guo, Huajun |4 oth | |
700 | 1 | |a Yan, Guochun |4 oth | |
700 | 1 | |a Li, Lingjun |4 oth | |
700 | 1 | |a Liu, Yong |4 oth | |
700 | 1 | |a Wang, Jiexi |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Xiao, Hong ELSEVIER |t Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |d 2013 |d the international journal on the science and technology of electrochemical energy systems |g New York, NY [u.a.] |w (DE-627)ELV00098745X |
773 | 1 | 8 | |g volume:463 |g year:2020 |g day:1 |g month:07 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jpowsour.2020.228178 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 50.92 |j Meerestechnik |q VZ |
951 | |a AR | ||
952 | |d 463 |j 2020 |b 1 |c 0701 |h 0 |
author_variant |
l t lt |
---|---|
matchkey_str |
tanleilixinhaichengmengliutianchengwangz:2020----:niualrddiouaoiearynbigtbeihumtlndwtu |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
50.92 |
publishDate |
2020 |
allfields |
10.1016/j.jpowsour.2020.228178 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001005.pica (DE-627)ELV050252739 (ELSEVIER)S0378-7753(20)30481-X DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Tan, Lei verfasserin aut In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. 3D lithiophilic framework Elsevier Li metal batteries Elsevier Li2O-Homogenized Li+ flux Elsevier Li dendrite Elsevier Li storage host Elsevier Li, Xinhai oth Cheng, Meng oth Liu, Tiancheng oth Wang, Zhixing oth Guo, Huajun oth Yan, Guochun oth Li, Lingjun oth Liu, Yong oth Wang, Jiexi oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:463 year:2020 day:1 month:07 pages:0 https://doi.org/10.1016/j.jpowsour.2020.228178 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 463 2020 1 0701 0 |
spelling |
10.1016/j.jpowsour.2020.228178 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001005.pica (DE-627)ELV050252739 (ELSEVIER)S0378-7753(20)30481-X DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Tan, Lei verfasserin aut In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. 3D lithiophilic framework Elsevier Li metal batteries Elsevier Li2O-Homogenized Li+ flux Elsevier Li dendrite Elsevier Li storage host Elsevier Li, Xinhai oth Cheng, Meng oth Liu, Tiancheng oth Wang, Zhixing oth Guo, Huajun oth Yan, Guochun oth Li, Lingjun oth Liu, Yong oth Wang, Jiexi oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:463 year:2020 day:1 month:07 pages:0 https://doi.org/10.1016/j.jpowsour.2020.228178 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 463 2020 1 0701 0 |
allfields_unstemmed |
10.1016/j.jpowsour.2020.228178 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001005.pica (DE-627)ELV050252739 (ELSEVIER)S0378-7753(20)30481-X DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Tan, Lei verfasserin aut In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. 3D lithiophilic framework Elsevier Li metal batteries Elsevier Li2O-Homogenized Li+ flux Elsevier Li dendrite Elsevier Li storage host Elsevier Li, Xinhai oth Cheng, Meng oth Liu, Tiancheng oth Wang, Zhixing oth Guo, Huajun oth Yan, Guochun oth Li, Lingjun oth Liu, Yong oth Wang, Jiexi oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:463 year:2020 day:1 month:07 pages:0 https://doi.org/10.1016/j.jpowsour.2020.228178 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 463 2020 1 0701 0 |
allfieldsGer |
10.1016/j.jpowsour.2020.228178 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001005.pica (DE-627)ELV050252739 (ELSEVIER)S0378-7753(20)30481-X DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Tan, Lei verfasserin aut In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. 3D lithiophilic framework Elsevier Li metal batteries Elsevier Li2O-Homogenized Li+ flux Elsevier Li dendrite Elsevier Li storage host Elsevier Li, Xinhai oth Cheng, Meng oth Liu, Tiancheng oth Wang, Zhixing oth Guo, Huajun oth Yan, Guochun oth Li, Lingjun oth Liu, Yong oth Wang, Jiexi oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:463 year:2020 day:1 month:07 pages:0 https://doi.org/10.1016/j.jpowsour.2020.228178 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 463 2020 1 0701 0 |
allfieldsSound |
10.1016/j.jpowsour.2020.228178 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001005.pica (DE-627)ELV050252739 (ELSEVIER)S0378-7753(20)30481-X DE-627 ger DE-627 rakwb eng 690 VZ 50.92 bkl Tan, Lei verfasserin aut In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. 3D lithiophilic framework Elsevier Li metal batteries Elsevier Li2O-Homogenized Li+ flux Elsevier Li dendrite Elsevier Li storage host Elsevier Li, Xinhai oth Cheng, Meng oth Liu, Tiancheng oth Wang, Zhixing oth Guo, Huajun oth Yan, Guochun oth Li, Lingjun oth Liu, Yong oth Wang, Jiexi oth Enthalten in Elsevier Xiao, Hong ELSEVIER Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method 2013 the international journal on the science and technology of electrochemical energy systems New York, NY [u.a.] (DE-627)ELV00098745X volume:463 year:2020 day:1 month:07 pages:0 https://doi.org/10.1016/j.jpowsour.2020.228178 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 50.92 Meerestechnik VZ AR 463 2020 1 0701 0 |
language |
English |
source |
Enthalten in Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method New York, NY [u.a.] volume:463 year:2020 day:1 month:07 pages:0 |
sourceStr |
Enthalten in Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method New York, NY [u.a.] volume:463 year:2020 day:1 month:07 pages:0 |
format_phy_str_mv |
Article |
bklname |
Meerestechnik |
institution |
findex.gbv.de |
topic_facet |
3D lithiophilic framework Li metal batteries Li2O-Homogenized Li+ flux Li dendrite Li storage host |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
authorswithroles_txt_mv |
Tan, Lei @@aut@@ Li, Xinhai @@oth@@ Cheng, Meng @@oth@@ Liu, Tiancheng @@oth@@ Wang, Zhixing @@oth@@ Guo, Huajun @@oth@@ Yan, Guochun @@oth@@ Li, Lingjun @@oth@@ Liu, Yong @@oth@@ Wang, Jiexi @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV00098745X |
dewey-sort |
3690 |
id |
ELV050252739 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV050252739</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626030138.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200625s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2020.228178</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001005.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV050252739</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(20)30481-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tan, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="8"><subfield code="a">In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">3D lithiophilic framework</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Li metal batteries</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Li2O-Homogenized Li+ flux</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Li dendrite</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Li storage host</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xinhai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Meng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Tiancheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhixing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Huajun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Guochun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Lingjun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiexi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Xiao, Hong ELSEVIER</subfield><subfield code="t">Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method</subfield><subfield code="d">2013</subfield><subfield code="d">the international journal on the science and technology of electrochemical energy systems</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV00098745X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:463</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpowsour.2020.228178</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">463</subfield><subfield code="j">2020</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Tan, Lei |
spellingShingle |
Tan, Lei ddc 690 bkl 50.92 Elsevier 3D lithiophilic framework Elsevier Li metal batteries Elsevier Li2O-Homogenized Li+ flux Elsevier Li dendrite Elsevier Li storage host In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency |
authorStr |
Tan, Lei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV00098745X |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 VZ 50.92 bkl In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency 3D lithiophilic framework Elsevier Li metal batteries Elsevier Li2O-Homogenized Li+ flux Elsevier Li dendrite Elsevier Li storage host Elsevier |
topic |
ddc 690 bkl 50.92 Elsevier 3D lithiophilic framework Elsevier Li metal batteries Elsevier Li2O-Homogenized Li+ flux Elsevier Li dendrite Elsevier Li storage host |
topic_unstemmed |
ddc 690 bkl 50.92 Elsevier 3D lithiophilic framework Elsevier Li metal batteries Elsevier Li2O-Homogenized Li+ flux Elsevier Li dendrite Elsevier Li storage host |
topic_browse |
ddc 690 bkl 50.92 Elsevier 3D lithiophilic framework Elsevier Li metal batteries Elsevier Li2O-Homogenized Li+ flux Elsevier Li dendrite Elsevier Li storage host |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x l xl m c mc t l tl z w zw h g hg g y gy l l ll y l yl j w jw |
hierarchy_parent_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
hierarchy_parent_id |
ELV00098745X |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV00098745X |
title |
In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency |
ctrlnum |
(DE-627)ELV050252739 (ELSEVIER)S0378-7753(20)30481-X |
title_full |
In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency |
author_sort |
Tan, Lei |
journal |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
journalStr |
Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Tan, Lei |
container_volume |
463 |
class |
690 VZ 50.92 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tan, Lei |
doi_str_mv |
10.1016/j.jpowsour.2020.228178 |
dewey-full |
690 |
title_sort |
tailored 3d li2ocu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency |
title_auth |
In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency |
abstract |
Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. |
abstractGer |
Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. |
abstract_unstemmed |
Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency |
url |
https://doi.org/10.1016/j.jpowsour.2020.228178 |
remote_bool |
true |
author2 |
Li, Xinhai Cheng, Meng Liu, Tiancheng Wang, Zhixing Guo, Huajun Yan, Guochun Li, Lingjun Liu, Yong Wang, Jiexi |
author2Str |
Li, Xinhai Cheng, Meng Liu, Tiancheng Wang, Zhixing Guo, Huajun Yan, Guochun Li, Lingjun Liu, Yong Wang, Jiexi |
ppnlink |
ELV00098745X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.jpowsour.2020.228178 |
up_date |
2024-07-06T17:01:59.735Z |
_version_ |
1803849899427495936 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV050252739</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626030138.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200625s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jpowsour.2020.228178</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001005.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV050252739</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0378-7753(20)30481-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tan, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="8"><subfield code="a">In-situ tailored 3D Li2OCu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Suffering from uncontrollable dendrite growth and volume expansion, Li metal batteries have the drawbacks of low coulombic efficiency and short cycle life, which severely limits its practical application. Herein, a multifunctional 3D skeleton of Li2OCu composite nanowires array on Cu foam (Li2O@CuNA/CF), in which the Li2O is homogenously distributed onto the Cu nanowires array through the in-situ spontaneous reaction between CuO nanowire and Li metal or electrochemical lithiation of CuO, is designed and serves as lithium storage host for Li metal anode. The lithiophilic Li2O@CuNA provides enough Li nucleation sites for regulating the distribution of Li ions and homogenizing the repeated plating/stripping of Li. The Li2O@CuNA/CF hierarchical structure ensures the rapid charge transfer and inhibits of Li volume expansion. As a result, Li is well accommodated in the Li2O@CuNA/CF skeleton and no distinct Li dendrite is observed. More importantly, the coulombic efficiency is up to 98.5% after 300 cycles in half-cell. The corresponding Li2O@CuNA/CF/Li symmetric cell exhibits superior stable voltage profile with ultra-low voltage hysteresis (15 mV) for 600 h. This work provides a guide for building a 3D Li2O-metal lithiophilic framework for safe and stable Li anode in Li metal batteries.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">3D lithiophilic framework</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Li metal batteries</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Li2O-Homogenized Li+ flux</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Li dendrite</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Li storage host</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xinhai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Meng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Tiancheng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhixing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Huajun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Guochun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Lingjun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Jiexi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Xiao, Hong ELSEVIER</subfield><subfield code="t">Numerical modeling of wave–current forces acting on horizontal cylinder of marine structures by VOF method</subfield><subfield code="d">2013</subfield><subfield code="d">the international journal on the science and technology of electrochemical energy systems</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV00098745X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:463</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:1</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jpowsour.2020.228178</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">463</subfield><subfield code="j">2020</subfield><subfield code="b">1</subfield><subfield code="c">0701</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401597 |