Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification
High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray di...
Ausführliche Beschreibung
Autor*in: |
Yu, Yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration - Rey, F. ELSEVIER, 2018, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2020 ; number:11 ; day:1 ; month:08 ; pages:19103-19110 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.ceramint.2020.04.245 |
---|
Katalog-ID: |
ELV050439820 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV050439820 | ||
003 | DE-627 | ||
005 | 20230626030532.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200625s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ceramint.2020.04.245 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001066.pica |
035 | |a (DE-627)ELV050439820 | ||
035 | |a (ELSEVIER)S0272-8842(20)31202-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Yu, Yang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification |
264 | 1 | |c 2020transfer abstract | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. | ||
520 | |a High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. | ||
650 | 7 | |a Vibration velocity |2 Elsevier | |
650 | 7 | |a High power |2 Elsevier | |
650 | 7 | |a Bi(Ni1/2Ti1/2)O3 modification |2 Elsevier | |
650 | 7 | |a PMnN-PZT-based ceramics |2 Elsevier | |
650 | 7 | |a Temperature stability |2 Elsevier | |
700 | 1 | |a Yang, Jikun |4 oth | |
700 | 1 | |a Wu, Jingen |4 oth | |
700 | 1 | |a Bian, Lang |4 oth | |
700 | 1 | |a Li, Xiaotian |4 oth | |
700 | 1 | |a Chen, Wanping |4 oth | |
700 | 1 | |a Dong, Shuxiang |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Rey, F. ELSEVIER |t Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |d 2018 |g Amsterdam [u.a.] |w (DE-627)ELV000899798 |
773 | 1 | 8 | |g volume:46 |g year:2020 |g number:11 |g day:1 |g month:08 |g pages:19103-19110 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ceramint.2020.04.245 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 46 |j 2020 |e 11 |b 1 |c 0801 |h 19103-19110 |g 8 |
author_variant |
y y yy |
---|---|
matchkey_str |
yuyangyangjikunwujingenbianlanglixiaotia:2020----:nacnhgpwrefracsfbn3b33bri3eaisy |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2020 |
allfields |
10.1016/j.ceramint.2020.04.245 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001066.pica (DE-627)ELV050439820 (ELSEVIER)S0272-8842(20)31202-5 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Yu, Yang verfasserin aut Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification 2020transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. Vibration velocity Elsevier High power Elsevier Bi(Ni1/2Ti1/2)O3 modification Elsevier PMnN-PZT-based ceramics Elsevier Temperature stability Elsevier Yang, Jikun oth Wu, Jingen oth Bian, Lang oth Li, Xiaotian oth Chen, Wanping oth Dong, Shuxiang oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:11 day:1 month:08 pages:19103-19110 extent:8 https://doi.org/10.1016/j.ceramint.2020.04.245 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 11 1 0801 19103-19110 8 |
spelling |
10.1016/j.ceramint.2020.04.245 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001066.pica (DE-627)ELV050439820 (ELSEVIER)S0272-8842(20)31202-5 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Yu, Yang verfasserin aut Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification 2020transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. Vibration velocity Elsevier High power Elsevier Bi(Ni1/2Ti1/2)O3 modification Elsevier PMnN-PZT-based ceramics Elsevier Temperature stability Elsevier Yang, Jikun oth Wu, Jingen oth Bian, Lang oth Li, Xiaotian oth Chen, Wanping oth Dong, Shuxiang oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:11 day:1 month:08 pages:19103-19110 extent:8 https://doi.org/10.1016/j.ceramint.2020.04.245 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 11 1 0801 19103-19110 8 |
allfields_unstemmed |
10.1016/j.ceramint.2020.04.245 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001066.pica (DE-627)ELV050439820 (ELSEVIER)S0272-8842(20)31202-5 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Yu, Yang verfasserin aut Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification 2020transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. Vibration velocity Elsevier High power Elsevier Bi(Ni1/2Ti1/2)O3 modification Elsevier PMnN-PZT-based ceramics Elsevier Temperature stability Elsevier Yang, Jikun oth Wu, Jingen oth Bian, Lang oth Li, Xiaotian oth Chen, Wanping oth Dong, Shuxiang oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:11 day:1 month:08 pages:19103-19110 extent:8 https://doi.org/10.1016/j.ceramint.2020.04.245 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 11 1 0801 19103-19110 8 |
allfieldsGer |
10.1016/j.ceramint.2020.04.245 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001066.pica (DE-627)ELV050439820 (ELSEVIER)S0272-8842(20)31202-5 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Yu, Yang verfasserin aut Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification 2020transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. Vibration velocity Elsevier High power Elsevier Bi(Ni1/2Ti1/2)O3 modification Elsevier PMnN-PZT-based ceramics Elsevier Temperature stability Elsevier Yang, Jikun oth Wu, Jingen oth Bian, Lang oth Li, Xiaotian oth Chen, Wanping oth Dong, Shuxiang oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:11 day:1 month:08 pages:19103-19110 extent:8 https://doi.org/10.1016/j.ceramint.2020.04.245 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 11 1 0801 19103-19110 8 |
allfieldsSound |
10.1016/j.ceramint.2020.04.245 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001066.pica (DE-627)ELV050439820 (ELSEVIER)S0272-8842(20)31202-5 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Yu, Yang verfasserin aut Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification 2020transfer abstract 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. Vibration velocity Elsevier High power Elsevier Bi(Ni1/2Ti1/2)O3 modification Elsevier PMnN-PZT-based ceramics Elsevier Temperature stability Elsevier Yang, Jikun oth Wu, Jingen oth Bian, Lang oth Li, Xiaotian oth Chen, Wanping oth Dong, Shuxiang oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:11 day:1 month:08 pages:19103-19110 extent:8 https://doi.org/10.1016/j.ceramint.2020.04.245 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 11 1 0801 19103-19110 8 |
language |
English |
source |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:46 year:2020 number:11 day:1 month:08 pages:19103-19110 extent:8 |
sourceStr |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:46 year:2020 number:11 day:1 month:08 pages:19103-19110 extent:8 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
Vibration velocity High power Bi(Ni1/2Ti1/2)O3 modification PMnN-PZT-based ceramics Temperature stability |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
authorswithroles_txt_mv |
Yu, Yang @@aut@@ Yang, Jikun @@oth@@ Wu, Jingen @@oth@@ Bian, Lang @@oth@@ Li, Xiaotian @@oth@@ Chen, Wanping @@oth@@ Dong, Shuxiang @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV000899798 |
dewey-sort |
3333.7 |
id |
ELV050439820 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV050439820</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626030532.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200625s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2020.04.245</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001066.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV050439820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(20)31202-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vibration velocity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High power</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bi(Ni1/2Ti1/2)O3 modification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PMnN-PZT-based ceramics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Temperature stability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jikun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Jingen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bian, Lang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaotian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Wanping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Shuxiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11</subfield><subfield code="g">day:1</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:19103-19110</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2020.04.245</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2020</subfield><subfield code="e">11</subfield><subfield code="b">1</subfield><subfield code="c">0801</subfield><subfield code="h">19103-19110</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
author |
Yu, Yang |
spellingShingle |
Yu, Yang ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Vibration velocity Elsevier High power Elsevier Bi(Ni1/2Ti1/2)O3 modification Elsevier PMnN-PZT-based ceramics Elsevier Temperature stability Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification |
authorStr |
Yu, Yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000899798 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification Vibration velocity Elsevier High power Elsevier Bi(Ni1/2Ti1/2)O3 modification Elsevier PMnN-PZT-based ceramics Elsevier Temperature stability Elsevier |
topic |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Vibration velocity Elsevier High power Elsevier Bi(Ni1/2Ti1/2)O3 modification Elsevier PMnN-PZT-based ceramics Elsevier Temperature stability |
topic_unstemmed |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Vibration velocity Elsevier High power Elsevier Bi(Ni1/2Ti1/2)O3 modification Elsevier PMnN-PZT-based ceramics Elsevier Temperature stability |
topic_browse |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier Vibration velocity Elsevier High power Elsevier Bi(Ni1/2Ti1/2)O3 modification Elsevier PMnN-PZT-based ceramics Elsevier Temperature stability |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j y jy j w jw l b lb x l xl w c wc s d sd |
hierarchy_parent_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
hierarchy_parent_id |
ELV000899798 |
dewey-tens |
330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000899798 |
title |
Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification |
ctrlnum |
(DE-627)ELV050439820 (ELSEVIER)S0272-8842(20)31202-5 |
title_full |
Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification |
author_sort |
Yu, Yang |
journal |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
journalStr |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
19103 |
author_browse |
Yu, Yang |
container_volume |
46 |
physical |
8 |
class |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yu, Yang |
doi_str_mv |
10.1016/j.ceramint.2020.04.245 |
dewey-full |
333.7 610 |
title_sort |
enhancing high power performances of pb(mn1/3nb2/3)o3–pb(zr,ti)o3 ceramics by bi(ni1/2ti1/2)o3 modification |
title_auth |
Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification |
abstract |
High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. |
abstractGer |
High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. |
abstract_unstemmed |
High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO |
container_issue |
11 |
title_short |
Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification |
url |
https://doi.org/10.1016/j.ceramint.2020.04.245 |
remote_bool |
true |
author2 |
Yang, Jikun Wu, Jingen Bian, Lang Li, Xiaotian Chen, Wanping Dong, Shuxiang |
author2Str |
Yang, Jikun Wu, Jingen Bian, Lang Li, Xiaotian Chen, Wanping Dong, Shuxiang |
ppnlink |
ELV000899798 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.ceramint.2020.04.245 |
up_date |
2024-07-06T17:32:38.543Z |
_version_ |
1803851827557433344 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV050439820</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626030532.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200625s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2020.04.245</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001066.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV050439820</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(20)31202-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing high power performances of Pb(Mn1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics by Bi(Ni1/2Ti1/2)O3 modification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High power piezoelectric ceramics 0.04Bi(Ni1/2Ti1/2)O3-xPb(Mn1/3Nb2/3)O3-(0.96-x)Pb(Zr y Ti1-y )O3 (BNT-xPMnN-PZ y T) with various contents of PMnN from 0 to 12 mol% (keep y = 0.50) and Zr/Ti ratio gradually increasing from 48/52 to 52/48 (keep x = 0.06) were prepared by solid-state method. X-ray diffraction (XRD) results show a single phase of polycrystalline perovskite and indicate that the phase structure transforms from tetragonal phase to rhombohedral with x and y increasing. The optimal comprehensive properties of BNT-xPMnN-PZ y T ceramic, d 33 (355 pC/N), k p (0.58), ε r (1512), tanδ (0.40%), T c (336 °C) and Q m (2010), are obtained at x = 0.06 and y = 0.50, which are apparently superior to typical or commercial Pb(Zr,Ti)O3 (PZT) based power ceramics. Within the range from room temperature to 200 °C, the variation of electric-field induced strains is less than 8.3%, indicating its good temperature stability. The maximum vibration velocity of the ceramic at temperature rise of 20 °C is measured to be 0.92 m/s, which is about 2 times higher than that of commercial hard PZT ceramics, suggesting the BNT-xPMnN-PZ y T ceramic is a competitive and potential candidate for power piezoelectric transduction and actuation applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Vibration velocity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High power</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bi(Ni1/2Ti1/2)O3 modification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">PMnN-PZT-based ceramics</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Temperature stability</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jikun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Jingen</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bian, Lang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaotian</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Wanping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Shuxiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:11</subfield><subfield code="g">day:1</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:19103-19110</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2020.04.245</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2020</subfield><subfield code="e">11</subfield><subfield code="b">1</subfield><subfield code="c">0801</subfield><subfield code="h">19103-19110</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
score |
7.4000645 |