Approximation by max-min operators: A general theory and its applications
In this study, we obtain a general approximation theorem for max-min operators including many significant applications. We also study the error estimation in this approximation by using Hölder continuous functions. The main motivation for this work is the paper by Bede et al. (2008) . As a special c...
Ausführliche Beschreibung
Autor*in: |
Gökçer, Türkan Yeliz [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Umfang: |
16 |
---|
Übergeordnetes Werk: |
Enthalten in: Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species - Polizzi, P. ELSEVIER, 2017transfer abstract, [S.l.] |
---|---|
Übergeordnetes Werk: |
volume:394 ; year:2020 ; day:1 ; month:09 ; pages:146-161 ; extent:16 |
Links: |
---|
DOI / URN: |
10.1016/j.fss.2019.11.007 |
---|
Katalog-ID: |
ELV050515039 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV050515039 | ||
003 | DE-627 | ||
005 | 20230624164912.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200625s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.fss.2019.11.007 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001028.pica |
035 | |a (DE-627)ELV050515039 | ||
035 | |a (ELSEVIER)S0165-0114(19)30502-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 15,3 |2 ssgn | ||
084 | |a PHARM |q DE-84 |2 fid | ||
084 | |a 44.40 |2 bkl | ||
100 | 1 | |a Gökçer, Türkan Yeliz |e verfasserin |4 aut | |
245 | 1 | 0 | |a Approximation by max-min operators: A general theory and its applications |
264 | 1 | |c 2020 | |
300 | |a 16 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In this study, we obtain a general approximation theorem for max-min operators including many significant applications. We also study the error estimation in this approximation by using Hölder continuous functions. The main motivation for this work is the paper by Bede et al. (2008) . As a special case of our results, we explain how to approximate nonnegative continuous functions of one and two variables by means of the max-min Shepard operators. We also study the approximation by the max-min Bernstein operators. Furthermore, to verify the theory we display graphical illustrations. | ||
650 | 7 | |a Max-product operators |2 Elsevier | |
650 | 7 | |a Pseudo linearity |2 Elsevier | |
650 | 7 | |a Shepard-type operators |2 Elsevier | |
650 | 7 | |a Max-min operators |2 Elsevier | |
700 | 1 | |a Duman, Oktay |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Polizzi, P. ELSEVIER |t Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species |d 2017transfer abstract |g [S.l.] |w (DE-627)ELV020637101 |
773 | 1 | 8 | |g volume:394 |g year:2020 |g day:1 |g month:09 |g pages:146-161 |g extent:16 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.fss.2019.11.007 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a FID-PHARM | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_30 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_34 | ||
912 | |a GBV_ILN_50 | ||
912 | |a GBV_ILN_55 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_61 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_92 | ||
912 | |a GBV_ILN_104 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_121 | ||
912 | |a GBV_ILN_122 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_131 | ||
912 | |a GBV_ILN_147 | ||
912 | |a GBV_ILN_160 | ||
912 | |a GBV_ILN_179 | ||
912 | |a GBV_ILN_181 | ||
912 | |a GBV_ILN_276 | ||
912 | |a GBV_ILN_737 | ||
912 | |a GBV_ILN_754 | ||
912 | |a GBV_ILN_812 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2023 | ||
912 | |a GBV_ILN_2024 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2032 | ||
912 | |a GBV_ILN_2033 | ||
912 | |a GBV_ILN_2035 | ||
912 | |a GBV_ILN_2040 | ||
912 | |a GBV_ILN_2043 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2084 | ||
912 | |a GBV_ILN_2121 | ||
912 | |a GBV_ILN_2227 | ||
912 | |a GBV_ILN_2502 | ||
912 | |a GBV_ILN_2505 | ||
912 | |a GBV_ILN_2508 | ||
936 | b | k | |a 44.40 |j Pharmazie |j Pharmazeutika |q VZ |
951 | |a AR | ||
952 | |d 394 |j 2020 |b 1 |c 0901 |h 146-161 |g 16 |
author_variant |
t y g ty tyg |
---|---|
matchkey_str |
gkertrkanyelizdumanoktay:2020----:prxmtobmxioeaosgnrlhoy |
hierarchy_sort_str |
2020 |
bklnumber |
44.40 |
publishDate |
2020 |
allfields |
10.1016/j.fss.2019.11.007 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001028.pica (DE-627)ELV050515039 (ELSEVIER)S0165-0114(19)30502-0 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Gökçer, Türkan Yeliz verfasserin aut Approximation by max-min operators: A general theory and its applications 2020 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, we obtain a general approximation theorem for max-min operators including many significant applications. We also study the error estimation in this approximation by using Hölder continuous functions. The main motivation for this work is the paper by Bede et al. (2008) . As a special case of our results, we explain how to approximate nonnegative continuous functions of one and two variables by means of the max-min Shepard operators. We also study the approximation by the max-min Bernstein operators. Furthermore, to verify the theory we display graphical illustrations. Max-product operators Elsevier Pseudo linearity Elsevier Shepard-type operators Elsevier Max-min operators Elsevier Duman, Oktay oth Enthalten in Elsevier Polizzi, P. ELSEVIER Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species 2017transfer abstract [S.l.] (DE-627)ELV020637101 volume:394 year:2020 day:1 month:09 pages:146-161 extent:16 https://doi.org/10.1016/j.fss.2019.11.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_50 GBV_ILN_55 GBV_ILN_60 GBV_ILN_61 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_90 GBV_ILN_92 GBV_ILN_104 GBV_ILN_105 GBV_ILN_120 GBV_ILN_121 GBV_ILN_122 GBV_ILN_130 GBV_ILN_131 GBV_ILN_147 GBV_ILN_160 GBV_ILN_179 GBV_ILN_181 GBV_ILN_276 GBV_ILN_737 GBV_ILN_754 GBV_ILN_812 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2023 GBV_ILN_2024 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2032 GBV_ILN_2033 GBV_ILN_2035 GBV_ILN_2040 GBV_ILN_2043 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2065 GBV_ILN_2084 GBV_ILN_2121 GBV_ILN_2227 GBV_ILN_2502 GBV_ILN_2505 GBV_ILN_2508 44.40 Pharmazie Pharmazeutika VZ AR 394 2020 1 0901 146-161 16 |
spelling |
10.1016/j.fss.2019.11.007 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001028.pica (DE-627)ELV050515039 (ELSEVIER)S0165-0114(19)30502-0 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Gökçer, Türkan Yeliz verfasserin aut Approximation by max-min operators: A general theory and its applications 2020 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, we obtain a general approximation theorem for max-min operators including many significant applications. We also study the error estimation in this approximation by using Hölder continuous functions. The main motivation for this work is the paper by Bede et al. (2008) . As a special case of our results, we explain how to approximate nonnegative continuous functions of one and two variables by means of the max-min Shepard operators. We also study the approximation by the max-min Bernstein operators. Furthermore, to verify the theory we display graphical illustrations. Max-product operators Elsevier Pseudo linearity Elsevier Shepard-type operators Elsevier Max-min operators Elsevier Duman, Oktay oth Enthalten in Elsevier Polizzi, P. ELSEVIER Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species 2017transfer abstract [S.l.] (DE-627)ELV020637101 volume:394 year:2020 day:1 month:09 pages:146-161 extent:16 https://doi.org/10.1016/j.fss.2019.11.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_50 GBV_ILN_55 GBV_ILN_60 GBV_ILN_61 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_90 GBV_ILN_92 GBV_ILN_104 GBV_ILN_105 GBV_ILN_120 GBV_ILN_121 GBV_ILN_122 GBV_ILN_130 GBV_ILN_131 GBV_ILN_147 GBV_ILN_160 GBV_ILN_179 GBV_ILN_181 GBV_ILN_276 GBV_ILN_737 GBV_ILN_754 GBV_ILN_812 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2023 GBV_ILN_2024 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2032 GBV_ILN_2033 GBV_ILN_2035 GBV_ILN_2040 GBV_ILN_2043 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2065 GBV_ILN_2084 GBV_ILN_2121 GBV_ILN_2227 GBV_ILN_2502 GBV_ILN_2505 GBV_ILN_2508 44.40 Pharmazie Pharmazeutika VZ AR 394 2020 1 0901 146-161 16 |
allfields_unstemmed |
10.1016/j.fss.2019.11.007 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001028.pica (DE-627)ELV050515039 (ELSEVIER)S0165-0114(19)30502-0 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Gökçer, Türkan Yeliz verfasserin aut Approximation by max-min operators: A general theory and its applications 2020 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, we obtain a general approximation theorem for max-min operators including many significant applications. We also study the error estimation in this approximation by using Hölder continuous functions. The main motivation for this work is the paper by Bede et al. (2008) . As a special case of our results, we explain how to approximate nonnegative continuous functions of one and two variables by means of the max-min Shepard operators. We also study the approximation by the max-min Bernstein operators. Furthermore, to verify the theory we display graphical illustrations. Max-product operators Elsevier Pseudo linearity Elsevier Shepard-type operators Elsevier Max-min operators Elsevier Duman, Oktay oth Enthalten in Elsevier Polizzi, P. ELSEVIER Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species 2017transfer abstract [S.l.] (DE-627)ELV020637101 volume:394 year:2020 day:1 month:09 pages:146-161 extent:16 https://doi.org/10.1016/j.fss.2019.11.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_50 GBV_ILN_55 GBV_ILN_60 GBV_ILN_61 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_90 GBV_ILN_92 GBV_ILN_104 GBV_ILN_105 GBV_ILN_120 GBV_ILN_121 GBV_ILN_122 GBV_ILN_130 GBV_ILN_131 GBV_ILN_147 GBV_ILN_160 GBV_ILN_179 GBV_ILN_181 GBV_ILN_276 GBV_ILN_737 GBV_ILN_754 GBV_ILN_812 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2023 GBV_ILN_2024 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2032 GBV_ILN_2033 GBV_ILN_2035 GBV_ILN_2040 GBV_ILN_2043 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2065 GBV_ILN_2084 GBV_ILN_2121 GBV_ILN_2227 GBV_ILN_2502 GBV_ILN_2505 GBV_ILN_2508 44.40 Pharmazie Pharmazeutika VZ AR 394 2020 1 0901 146-161 16 |
allfieldsGer |
10.1016/j.fss.2019.11.007 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001028.pica (DE-627)ELV050515039 (ELSEVIER)S0165-0114(19)30502-0 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Gökçer, Türkan Yeliz verfasserin aut Approximation by max-min operators: A general theory and its applications 2020 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, we obtain a general approximation theorem for max-min operators including many significant applications. We also study the error estimation in this approximation by using Hölder continuous functions. The main motivation for this work is the paper by Bede et al. (2008) . As a special case of our results, we explain how to approximate nonnegative continuous functions of one and two variables by means of the max-min Shepard operators. We also study the approximation by the max-min Bernstein operators. Furthermore, to verify the theory we display graphical illustrations. Max-product operators Elsevier Pseudo linearity Elsevier Shepard-type operators Elsevier Max-min operators Elsevier Duman, Oktay oth Enthalten in Elsevier Polizzi, P. ELSEVIER Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species 2017transfer abstract [S.l.] (DE-627)ELV020637101 volume:394 year:2020 day:1 month:09 pages:146-161 extent:16 https://doi.org/10.1016/j.fss.2019.11.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_50 GBV_ILN_55 GBV_ILN_60 GBV_ILN_61 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_90 GBV_ILN_92 GBV_ILN_104 GBV_ILN_105 GBV_ILN_120 GBV_ILN_121 GBV_ILN_122 GBV_ILN_130 GBV_ILN_131 GBV_ILN_147 GBV_ILN_160 GBV_ILN_179 GBV_ILN_181 GBV_ILN_276 GBV_ILN_737 GBV_ILN_754 GBV_ILN_812 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2023 GBV_ILN_2024 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2032 GBV_ILN_2033 GBV_ILN_2035 GBV_ILN_2040 GBV_ILN_2043 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2065 GBV_ILN_2084 GBV_ILN_2121 GBV_ILN_2227 GBV_ILN_2502 GBV_ILN_2505 GBV_ILN_2508 44.40 Pharmazie Pharmazeutika VZ AR 394 2020 1 0901 146-161 16 |
allfieldsSound |
10.1016/j.fss.2019.11.007 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001028.pica (DE-627)ELV050515039 (ELSEVIER)S0165-0114(19)30502-0 DE-627 ger DE-627 rakwb eng 610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Gökçer, Türkan Yeliz verfasserin aut Approximation by max-min operators: A general theory and its applications 2020 16 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In this study, we obtain a general approximation theorem for max-min operators including many significant applications. We also study the error estimation in this approximation by using Hölder continuous functions. The main motivation for this work is the paper by Bede et al. (2008) . As a special case of our results, we explain how to approximate nonnegative continuous functions of one and two variables by means of the max-min Shepard operators. We also study the approximation by the max-min Bernstein operators. Furthermore, to verify the theory we display graphical illustrations. Max-product operators Elsevier Pseudo linearity Elsevier Shepard-type operators Elsevier Max-min operators Elsevier Duman, Oktay oth Enthalten in Elsevier Polizzi, P. ELSEVIER Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species 2017transfer abstract [S.l.] (DE-627)ELV020637101 volume:394 year:2020 day:1 month:09 pages:146-161 extent:16 https://doi.org/10.1016/j.fss.2019.11.007 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_50 GBV_ILN_55 GBV_ILN_60 GBV_ILN_61 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_90 GBV_ILN_92 GBV_ILN_104 GBV_ILN_105 GBV_ILN_120 GBV_ILN_121 GBV_ILN_122 GBV_ILN_130 GBV_ILN_131 GBV_ILN_147 GBV_ILN_160 GBV_ILN_179 GBV_ILN_181 GBV_ILN_276 GBV_ILN_737 GBV_ILN_754 GBV_ILN_812 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2023 GBV_ILN_2024 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2032 GBV_ILN_2033 GBV_ILN_2035 GBV_ILN_2040 GBV_ILN_2043 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2065 GBV_ILN_2084 GBV_ILN_2121 GBV_ILN_2227 GBV_ILN_2502 GBV_ILN_2505 GBV_ILN_2508 44.40 Pharmazie Pharmazeutika VZ AR 394 2020 1 0901 146-161 16 |
language |
English |
source |
Enthalten in Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species [S.l.] volume:394 year:2020 day:1 month:09 pages:146-161 extent:16 |
sourceStr |
Enthalten in Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species [S.l.] volume:394 year:2020 day:1 month:09 pages:146-161 extent:16 |
format_phy_str_mv |
Article |
bklname |
Pharmazie Pharmazeutika |
institution |
findex.gbv.de |
topic_facet |
Max-product operators Pseudo linearity Shepard-type operators Max-min operators |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species |
authorswithroles_txt_mv |
Gökçer, Türkan Yeliz @@aut@@ Duman, Oktay @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV020637101 |
dewey-sort |
3610 |
id |
ELV050515039 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV050515039</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624164912.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200625s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fss.2019.11.007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV050515039</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0165-0114(19)30502-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gökçer, Türkan Yeliz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximation by max-min operators: A general theory and its applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, we obtain a general approximation theorem for max-min operators including many significant applications. We also study the error estimation in this approximation by using Hölder continuous functions. The main motivation for this work is the paper by Bede et al. (2008) . As a special case of our results, we explain how to approximate nonnegative continuous functions of one and two variables by means of the max-min Shepard operators. We also study the approximation by the max-min Bernstein operators. Furthermore, to verify the theory we display graphical illustrations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Max-product operators</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pseudo linearity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shepard-type operators</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Max-min operators</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duman, Oktay</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Polizzi, P. ELSEVIER</subfield><subfield code="t">Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species</subfield><subfield code="d">2017transfer abstract</subfield><subfield code="g">[S.l.]</subfield><subfield code="w">(DE-627)ELV020637101</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:394</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:1</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:146-161</subfield><subfield code="g">extent:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fss.2019.11.007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_50</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_61</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_92</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_104</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_131</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_179</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_276</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_737</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_812</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2023</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2024</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2032</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2033</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2040</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2043</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2084</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2502</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2505</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2508</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">394</subfield><subfield code="j">2020</subfield><subfield code="b">1</subfield><subfield code="c">0901</subfield><subfield code="h">146-161</subfield><subfield code="g">16</subfield></datafield></record></collection>
|
author |
Gökçer, Türkan Yeliz |
spellingShingle |
Gökçer, Türkan Yeliz ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Max-product operators Elsevier Pseudo linearity Elsevier Shepard-type operators Elsevier Max-min operators Approximation by max-min operators: A general theory and its applications |
authorStr |
Gökçer, Türkan Yeliz |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV020637101 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl Approximation by max-min operators: A general theory and its applications Max-product operators Elsevier Pseudo linearity Elsevier Shepard-type operators Elsevier Max-min operators Elsevier |
topic |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Max-product operators Elsevier Pseudo linearity Elsevier Shepard-type operators Elsevier Max-min operators |
topic_unstemmed |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Max-product operators Elsevier Pseudo linearity Elsevier Shepard-type operators Elsevier Max-min operators |
topic_browse |
ddc 610 ssgn 15,3 fid PHARM bkl 44.40 Elsevier Max-product operators Elsevier Pseudo linearity Elsevier Shepard-type operators Elsevier Max-min operators |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
o d od |
hierarchy_parent_title |
Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species |
hierarchy_parent_id |
ELV020637101 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV020637101 |
title |
Approximation by max-min operators: A general theory and its applications |
ctrlnum |
(DE-627)ELV050515039 (ELSEVIER)S0165-0114(19)30502-0 |
title_full |
Approximation by max-min operators: A general theory and its applications |
author_sort |
Gökçer, Türkan Yeliz |
journal |
Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species |
journalStr |
Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
146 |
author_browse |
Gökçer, Türkan Yeliz |
container_volume |
394 |
physical |
16 |
class |
610 VZ 15,3 ssgn PHARM DE-84 fid 44.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gökçer, Türkan Yeliz |
doi_str_mv |
10.1016/j.fss.2019.11.007 |
dewey-full |
610 |
title_sort |
approximation by max-min operators: a general theory and its applications |
title_auth |
Approximation by max-min operators: A general theory and its applications |
abstract |
In this study, we obtain a general approximation theorem for max-min operators including many significant applications. We also study the error estimation in this approximation by using Hölder continuous functions. The main motivation for this work is the paper by Bede et al. (2008) . As a special case of our results, we explain how to approximate nonnegative continuous functions of one and two variables by means of the max-min Shepard operators. We also study the approximation by the max-min Bernstein operators. Furthermore, to verify the theory we display graphical illustrations. |
abstractGer |
In this study, we obtain a general approximation theorem for max-min operators including many significant applications. We also study the error estimation in this approximation by using Hölder continuous functions. The main motivation for this work is the paper by Bede et al. (2008) . As a special case of our results, we explain how to approximate nonnegative continuous functions of one and two variables by means of the max-min Shepard operators. We also study the approximation by the max-min Bernstein operators. Furthermore, to verify the theory we display graphical illustrations. |
abstract_unstemmed |
In this study, we obtain a general approximation theorem for max-min operators including many significant applications. We also study the error estimation in this approximation by using Hölder continuous functions. The main motivation for this work is the paper by Bede et al. (2008) . As a special case of our results, we explain how to approximate nonnegative continuous functions of one and two variables by means of the max-min Shepard operators. We also study the approximation by the max-min Bernstein operators. Furthermore, to verify the theory we display graphical illustrations. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U FID-PHARM SSG-OLC-PHA SSG-OPC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_21 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_30 GBV_ILN_31 GBV_ILN_32 GBV_ILN_34 GBV_ILN_50 GBV_ILN_55 GBV_ILN_60 GBV_ILN_61 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_70 GBV_ILN_72 GBV_ILN_74 GBV_ILN_90 GBV_ILN_92 GBV_ILN_104 GBV_ILN_105 GBV_ILN_120 GBV_ILN_121 GBV_ILN_122 GBV_ILN_130 GBV_ILN_131 GBV_ILN_147 GBV_ILN_160 GBV_ILN_179 GBV_ILN_181 GBV_ILN_276 GBV_ILN_737 GBV_ILN_754 GBV_ILN_812 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2023 GBV_ILN_2024 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2032 GBV_ILN_2033 GBV_ILN_2035 GBV_ILN_2040 GBV_ILN_2043 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2065 GBV_ILN_2084 GBV_ILN_2121 GBV_ILN_2227 GBV_ILN_2502 GBV_ILN_2505 GBV_ILN_2508 |
title_short |
Approximation by max-min operators: A general theory and its applications |
url |
https://doi.org/10.1016/j.fss.2019.11.007 |
remote_bool |
true |
author2 |
Duman, Oktay |
author2Str |
Duman, Oktay |
ppnlink |
ELV020637101 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth |
doi_str |
10.1016/j.fss.2019.11.007 |
up_date |
2024-07-06T17:44:48.281Z |
_version_ |
1803852592742137856 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV050515039</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624164912.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200625s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fss.2019.11.007</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001028.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV050515039</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0165-0114(19)30502-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15,3</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHARM</subfield><subfield code="q">DE-84</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gökçer, Türkan Yeliz</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximation by max-min operators: A general theory and its applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">16</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, we obtain a general approximation theorem for max-min operators including many significant applications. We also study the error estimation in this approximation by using Hölder continuous functions. The main motivation for this work is the paper by Bede et al. (2008) . As a special case of our results, we explain how to approximate nonnegative continuous functions of one and two variables by means of the max-min Shepard operators. We also study the approximation by the max-min Bernstein operators. Furthermore, to verify the theory we display graphical illustrations.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Max-product operators</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pseudo linearity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shepard-type operators</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Max-min operators</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duman, Oktay</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Polizzi, P. ELSEVIER</subfield><subfield code="t">Blood cadmium and metallothionein concentrations in females of two sympatric pinnipeds species</subfield><subfield code="d">2017transfer abstract</subfield><subfield code="g">[S.l.]</subfield><subfield code="w">(DE-627)ELV020637101</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:394</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:1</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:146-161</subfield><subfield code="g">extent:16</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.fss.2019.11.007</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-PHARM</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_30</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_34</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_50</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_55</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_61</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_92</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_104</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_131</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_160</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_179</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_276</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_737</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_754</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_812</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2023</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2024</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2032</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2033</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2040</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2043</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2084</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2502</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2505</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2508</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.40</subfield><subfield code="j">Pharmazie</subfield><subfield code="j">Pharmazeutika</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">394</subfield><subfield code="j">2020</subfield><subfield code="b">1</subfield><subfield code="c">0901</subfield><subfield code="h">146-161</subfield><subfield code="g">16</subfield></datafield></record></collection>
|
score |
7.4014387 |