An efficient tensor completion method via truncated nuclear norm
Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to...
Ausführliche Beschreibung
Autor*in: |
Song, Yun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Propolis as lipid bioactive nano-carrier for topical nasal drug delivery - Rassu, Giovanna ELSEVIER, 2015, Orlando, Fla |
---|---|
Übergeordnetes Werk: |
volume:70 ; year:2020 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.jvcir.2020.102791 |
---|
Katalog-ID: |
ELV050853635 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV050853635 | ||
003 | DE-627 | ||
005 | 20230626031234.0 | ||
007 | cr uuu---uuuuu | ||
008 | 200722s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jvcir.2020.102791 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001075.pica |
035 | |a (DE-627)ELV050853635 | ||
035 | |a (ELSEVIER)S1047-3203(20)30041-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q VZ |
082 | 0 | 4 | |a 540 |q VZ |
100 | 1 | |a Song, Yun |e verfasserin |4 aut | |
245 | 1 | 0 | |a An efficient tensor completion method via truncated nuclear norm |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. | ||
520 | |a Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. | ||
650 | 7 | |a Tensor completion |2 Elsevier | |
650 | 7 | |a Visual data restoration |2 Elsevier | |
650 | 7 | |a Truncated tensor nuclear norm |2 Elsevier | |
650 | 7 | |a Tensor singular value decomposition |2 Elsevier | |
700 | 1 | |a Li, Jie |4 oth | |
700 | 1 | |a Chen, Xi |4 oth | |
700 | 1 | |a Zhang, Dengyong |4 oth | |
700 | 1 | |a Tang, Qiang |4 oth | |
700 | 1 | |a Yang, Kun |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Academic Press |a Rassu, Giovanna ELSEVIER |t Propolis as lipid bioactive nano-carrier for topical nasal drug delivery |d 2015 |g Orlando, Fla |w (DE-627)ELV023814993 |
773 | 1 | 8 | |g volume:70 |g year:2020 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jvcir.2020.102791 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_50 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_136 | ||
912 | |a GBV_ILN_162 | ||
912 | |a GBV_ILN_165 | ||
912 | |a GBV_ILN_176 | ||
912 | |a GBV_ILN_181 | ||
912 | |a GBV_ILN_203 | ||
912 | |a GBV_ILN_227 | ||
912 | |a GBV_ILN_352 | ||
912 | |a GBV_ILN_676 | ||
912 | |a GBV_ILN_791 | ||
912 | |a GBV_ILN_1018 | ||
951 | |a AR | ||
952 | |d 70 |j 2020 |h 0 |
author_variant |
y s ys |
---|---|
matchkey_str |
songyunlijiechenxizhangdengyongtangqiang:2020----:nfiintnocmltomtovarna |
hierarchy_sort_str |
2020transfer abstract |
publishDate |
2020 |
allfields |
10.1016/j.jvcir.2020.102791 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001075.pica (DE-627)ELV050853635 (ELSEVIER)S1047-3203(20)30041-9 DE-627 ger DE-627 rakwb eng 540 VZ 540 VZ Song, Yun verfasserin aut An efficient tensor completion method via truncated nuclear norm 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. Tensor completion Elsevier Visual data restoration Elsevier Truncated tensor nuclear norm Elsevier Tensor singular value decomposition Elsevier Li, Jie oth Chen, Xi oth Zhang, Dengyong oth Tang, Qiang oth Yang, Kun oth Enthalten in Academic Press Rassu, Giovanna ELSEVIER Propolis as lipid bioactive nano-carrier for topical nasal drug delivery 2015 Orlando, Fla (DE-627)ELV023814993 volume:70 year:2020 pages:0 https://doi.org/10.1016/j.jvcir.2020.102791 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_50 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_136 GBV_ILN_162 GBV_ILN_165 GBV_ILN_176 GBV_ILN_181 GBV_ILN_203 GBV_ILN_227 GBV_ILN_352 GBV_ILN_676 GBV_ILN_791 GBV_ILN_1018 AR 70 2020 0 |
spelling |
10.1016/j.jvcir.2020.102791 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001075.pica (DE-627)ELV050853635 (ELSEVIER)S1047-3203(20)30041-9 DE-627 ger DE-627 rakwb eng 540 VZ 540 VZ Song, Yun verfasserin aut An efficient tensor completion method via truncated nuclear norm 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. Tensor completion Elsevier Visual data restoration Elsevier Truncated tensor nuclear norm Elsevier Tensor singular value decomposition Elsevier Li, Jie oth Chen, Xi oth Zhang, Dengyong oth Tang, Qiang oth Yang, Kun oth Enthalten in Academic Press Rassu, Giovanna ELSEVIER Propolis as lipid bioactive nano-carrier for topical nasal drug delivery 2015 Orlando, Fla (DE-627)ELV023814993 volume:70 year:2020 pages:0 https://doi.org/10.1016/j.jvcir.2020.102791 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_50 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_136 GBV_ILN_162 GBV_ILN_165 GBV_ILN_176 GBV_ILN_181 GBV_ILN_203 GBV_ILN_227 GBV_ILN_352 GBV_ILN_676 GBV_ILN_791 GBV_ILN_1018 AR 70 2020 0 |
allfields_unstemmed |
10.1016/j.jvcir.2020.102791 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001075.pica (DE-627)ELV050853635 (ELSEVIER)S1047-3203(20)30041-9 DE-627 ger DE-627 rakwb eng 540 VZ 540 VZ Song, Yun verfasserin aut An efficient tensor completion method via truncated nuclear norm 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. Tensor completion Elsevier Visual data restoration Elsevier Truncated tensor nuclear norm Elsevier Tensor singular value decomposition Elsevier Li, Jie oth Chen, Xi oth Zhang, Dengyong oth Tang, Qiang oth Yang, Kun oth Enthalten in Academic Press Rassu, Giovanna ELSEVIER Propolis as lipid bioactive nano-carrier for topical nasal drug delivery 2015 Orlando, Fla (DE-627)ELV023814993 volume:70 year:2020 pages:0 https://doi.org/10.1016/j.jvcir.2020.102791 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_50 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_136 GBV_ILN_162 GBV_ILN_165 GBV_ILN_176 GBV_ILN_181 GBV_ILN_203 GBV_ILN_227 GBV_ILN_352 GBV_ILN_676 GBV_ILN_791 GBV_ILN_1018 AR 70 2020 0 |
allfieldsGer |
10.1016/j.jvcir.2020.102791 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001075.pica (DE-627)ELV050853635 (ELSEVIER)S1047-3203(20)30041-9 DE-627 ger DE-627 rakwb eng 540 VZ 540 VZ Song, Yun verfasserin aut An efficient tensor completion method via truncated nuclear norm 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. Tensor completion Elsevier Visual data restoration Elsevier Truncated tensor nuclear norm Elsevier Tensor singular value decomposition Elsevier Li, Jie oth Chen, Xi oth Zhang, Dengyong oth Tang, Qiang oth Yang, Kun oth Enthalten in Academic Press Rassu, Giovanna ELSEVIER Propolis as lipid bioactive nano-carrier for topical nasal drug delivery 2015 Orlando, Fla (DE-627)ELV023814993 volume:70 year:2020 pages:0 https://doi.org/10.1016/j.jvcir.2020.102791 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_50 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_136 GBV_ILN_162 GBV_ILN_165 GBV_ILN_176 GBV_ILN_181 GBV_ILN_203 GBV_ILN_227 GBV_ILN_352 GBV_ILN_676 GBV_ILN_791 GBV_ILN_1018 AR 70 2020 0 |
allfieldsSound |
10.1016/j.jvcir.2020.102791 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001075.pica (DE-627)ELV050853635 (ELSEVIER)S1047-3203(20)30041-9 DE-627 ger DE-627 rakwb eng 540 VZ 540 VZ Song, Yun verfasserin aut An efficient tensor completion method via truncated nuclear norm 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. Tensor completion Elsevier Visual data restoration Elsevier Truncated tensor nuclear norm Elsevier Tensor singular value decomposition Elsevier Li, Jie oth Chen, Xi oth Zhang, Dengyong oth Tang, Qiang oth Yang, Kun oth Enthalten in Academic Press Rassu, Giovanna ELSEVIER Propolis as lipid bioactive nano-carrier for topical nasal drug delivery 2015 Orlando, Fla (DE-627)ELV023814993 volume:70 year:2020 pages:0 https://doi.org/10.1016/j.jvcir.2020.102791 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_50 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_136 GBV_ILN_162 GBV_ILN_165 GBV_ILN_176 GBV_ILN_181 GBV_ILN_203 GBV_ILN_227 GBV_ILN_352 GBV_ILN_676 GBV_ILN_791 GBV_ILN_1018 AR 70 2020 0 |
language |
English |
source |
Enthalten in Propolis as lipid bioactive nano-carrier for topical nasal drug delivery Orlando, Fla volume:70 year:2020 pages:0 |
sourceStr |
Enthalten in Propolis as lipid bioactive nano-carrier for topical nasal drug delivery Orlando, Fla volume:70 year:2020 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Tensor completion Visual data restoration Truncated tensor nuclear norm Tensor singular value decomposition |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Propolis as lipid bioactive nano-carrier for topical nasal drug delivery |
authorswithroles_txt_mv |
Song, Yun @@aut@@ Li, Jie @@oth@@ Chen, Xi @@oth@@ Zhang, Dengyong @@oth@@ Tang, Qiang @@oth@@ Yang, Kun @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV023814993 |
dewey-sort |
3540 |
id |
ELV050853635 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV050853635</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626031234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200722s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jvcir.2020.102791</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001075.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV050853635</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1047-3203(20)30041-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An efficient tensor completion method via truncated nuclear norm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tensor completion</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Visual data restoration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Truncated tensor nuclear norm</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tensor singular value decomposition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Dengyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Qiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Kun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Rassu, Giovanna ELSEVIER</subfield><subfield code="t">Propolis as lipid bioactive nano-carrier for topical nasal drug delivery</subfield><subfield code="d">2015</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV023814993</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jvcir.2020.102791</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_50</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_136</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_162</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_176</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_203</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_352</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_676</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_791</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_1018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Song, Yun |
spellingShingle |
Song, Yun ddc 540 Elsevier Tensor completion Elsevier Visual data restoration Elsevier Truncated tensor nuclear norm Elsevier Tensor singular value decomposition An efficient tensor completion method via truncated nuclear norm |
authorStr |
Song, Yun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV023814993 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
540 VZ An efficient tensor completion method via truncated nuclear norm Tensor completion Elsevier Visual data restoration Elsevier Truncated tensor nuclear norm Elsevier Tensor singular value decomposition Elsevier |
topic |
ddc 540 Elsevier Tensor completion Elsevier Visual data restoration Elsevier Truncated tensor nuclear norm Elsevier Tensor singular value decomposition |
topic_unstemmed |
ddc 540 Elsevier Tensor completion Elsevier Visual data restoration Elsevier Truncated tensor nuclear norm Elsevier Tensor singular value decomposition |
topic_browse |
ddc 540 Elsevier Tensor completion Elsevier Visual data restoration Elsevier Truncated tensor nuclear norm Elsevier Tensor singular value decomposition |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j l jl x c xc d z dz q t qt k y ky |
hierarchy_parent_title |
Propolis as lipid bioactive nano-carrier for topical nasal drug delivery |
hierarchy_parent_id |
ELV023814993 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Propolis as lipid bioactive nano-carrier for topical nasal drug delivery |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV023814993 |
title |
An efficient tensor completion method via truncated nuclear norm |
ctrlnum |
(DE-627)ELV050853635 (ELSEVIER)S1047-3203(20)30041-9 |
title_full |
An efficient tensor completion method via truncated nuclear norm |
author_sort |
Song, Yun |
journal |
Propolis as lipid bioactive nano-carrier for topical nasal drug delivery |
journalStr |
Propolis as lipid bioactive nano-carrier for topical nasal drug delivery |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Song, Yun |
container_volume |
70 |
class |
540 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Song, Yun |
doi_str_mv |
10.1016/j.jvcir.2020.102791 |
dewey-full |
540 |
title_sort |
an efficient tensor completion method via truncated nuclear norm |
title_auth |
An efficient tensor completion method via truncated nuclear norm |
abstract |
Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. |
abstractGer |
Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. |
abstract_unstemmed |
Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_11 GBV_ILN_21 GBV_ILN_22 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_50 GBV_ILN_69 GBV_ILN_70 GBV_ILN_72 GBV_ILN_136 GBV_ILN_162 GBV_ILN_165 GBV_ILN_176 GBV_ILN_181 GBV_ILN_203 GBV_ILN_227 GBV_ILN_352 GBV_ILN_676 GBV_ILN_791 GBV_ILN_1018 |
title_short |
An efficient tensor completion method via truncated nuclear norm |
url |
https://doi.org/10.1016/j.jvcir.2020.102791 |
remote_bool |
true |
author2 |
Li, Jie Chen, Xi Zhang, Dengyong Tang, Qiang Yang, Kun |
author2Str |
Li, Jie Chen, Xi Zhang, Dengyong Tang, Qiang Yang, Kun |
ppnlink |
ELV023814993 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.jvcir.2020.102791 |
up_date |
2024-07-06T18:39:10.023Z |
_version_ |
1803856012927565824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV050853635</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626031234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">200722s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jvcir.2020.102791</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001075.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV050853635</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1047-3203(20)30041-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An efficient tensor completion method via truncated nuclear norm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Tensor completion aims to recover missing entries from partial observations for multi-dimensional data. Traditional tensor completion algorithms process the dimensional data by unfolding the tensor into matrices, which breaks the inherent correlation and dependencies in multiple channels and lead to critical information loss. In this paper, we propose a novel tensor completion model for visual multi-dimensional data completion under the tensor singular value decomposition (t-SVD) framework. In the proposed method, tensor is treated as a whole and a truncated nuclear norm regularization is employed to exploit the structural properties in a tensor and hidden information existing among the adjacent channels of a tensor. Besides, we introduce a weighted tensor to adjust the residual error of each frontal slices in consideration of their different recovery statistics. It does enhance the sparsity of all unfoldings of the tensor and accelerates the convergence of the proposed method. Experimental results on various visual datasets demonstrate the promising performance of the proposed method in comparison with the state-of-the-art tensor completion methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tensor completion</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Visual data restoration</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Truncated tensor nuclear norm</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tensor singular value decomposition</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Xi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Dengyong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, Qiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Kun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Academic Press</subfield><subfield code="a">Rassu, Giovanna ELSEVIER</subfield><subfield code="t">Propolis as lipid bioactive nano-carrier for topical nasal drug delivery</subfield><subfield code="d">2015</subfield><subfield code="g">Orlando, Fla</subfield><subfield code="w">(DE-627)ELV023814993</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:70</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jvcir.2020.102791</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_50</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_136</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_162</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_165</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_176</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_203</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_227</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_352</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_676</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_791</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_1018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">70</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4030848 |