Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications
In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists o...
Ausführliche Beschreibung
Autor*in: |
Wang, Haohao [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Umfang: |
6 |
---|
Übergeordnetes Werk: |
Enthalten in: Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration - Rey, F. ELSEVIER, 2018, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2020 ; number:14 ; day:1 ; month:10 ; pages:23035-23040 ; extent:6 |
Links: |
---|
DOI / URN: |
10.1016/j.ceramint.2020.06.080 |
---|
Katalog-ID: |
ELV051019345 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV051019345 | ||
003 | DE-627 | ||
005 | 20230626031436.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ceramint.2020.06.080 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001117.pica |
035 | |a (DE-627)ELV051019345 | ||
035 | |a (ELSEVIER)S0272-8842(20)31727-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |a 610 |q VZ |
084 | |a 43.12 |2 bkl | ||
084 | |a 43.13 |2 bkl | ||
084 | |a 44.13 |2 bkl | ||
100 | 1 | |a Wang, Haohao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications |
264 | 1 | |c 2020transfer abstract | |
300 | |a 6 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. | ||
520 | |a In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. | ||
650 | 7 | |a NH4Cl flux |2 Elsevier | |
650 | 7 | |a External quantum efficiency |2 Elsevier | |
650 | 7 | |a CaAlSiN3:Eu2+ |2 Elsevier | |
650 | 7 | |a Rod-like particles |2 Elsevier | |
700 | 1 | |a Liu, Yujie |4 oth | |
700 | 1 | |a Zhu, Xudong |4 oth | |
700 | 1 | |a Wei, Liangshu |4 oth | |
700 | 1 | |a Jiang, Xiping |4 oth | |
700 | 1 | |a Chen, Yong |4 oth | |
700 | 1 | |a Li, Langkai |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Rey, F. ELSEVIER |t Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |d 2018 |g Amsterdam [u.a.] |w (DE-627)ELV000899798 |
773 | 1 | 8 | |g volume:46 |g year:2020 |g number:14 |g day:1 |g month:10 |g pages:23035-23040 |g extent:6 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.ceramint.2020.06.080 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 43.12 |j Umweltchemie |q VZ |
936 | b | k | |a 43.13 |j Umwelttoxikologie |q VZ |
936 | b | k | |a 44.13 |j Medizinische Ökologie |q VZ |
951 | |a AR | ||
952 | |d 46 |j 2020 |e 14 |b 1 |c 1001 |h 23035-23040 |g 6 |
author_variant |
h w hw |
---|---|
matchkey_str |
wanghaohaoliuyujiezhuxudongweiliangshuji:2020----:rprtoocasne2eeitnpopobawsemtofrois |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
43.12 43.13 44.13 |
publishDate |
2020 |
allfields |
10.1016/j.ceramint.2020.06.080 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001117.pica (DE-627)ELV051019345 (ELSEVIER)S0272-8842(20)31727-2 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Wang, Haohao verfasserin aut Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications 2020transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. NH4Cl flux Elsevier External quantum efficiency Elsevier CaAlSiN3:Eu2+ Elsevier Rod-like particles Elsevier Liu, Yujie oth Zhu, Xudong oth Wei, Liangshu oth Jiang, Xiping oth Chen, Yong oth Li, Langkai oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:14 day:1 month:10 pages:23035-23040 extent:6 https://doi.org/10.1016/j.ceramint.2020.06.080 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 14 1 1001 23035-23040 6 |
spelling |
10.1016/j.ceramint.2020.06.080 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001117.pica (DE-627)ELV051019345 (ELSEVIER)S0272-8842(20)31727-2 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Wang, Haohao verfasserin aut Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications 2020transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. NH4Cl flux Elsevier External quantum efficiency Elsevier CaAlSiN3:Eu2+ Elsevier Rod-like particles Elsevier Liu, Yujie oth Zhu, Xudong oth Wei, Liangshu oth Jiang, Xiping oth Chen, Yong oth Li, Langkai oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:14 day:1 month:10 pages:23035-23040 extent:6 https://doi.org/10.1016/j.ceramint.2020.06.080 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 14 1 1001 23035-23040 6 |
allfields_unstemmed |
10.1016/j.ceramint.2020.06.080 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001117.pica (DE-627)ELV051019345 (ELSEVIER)S0272-8842(20)31727-2 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Wang, Haohao verfasserin aut Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications 2020transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. NH4Cl flux Elsevier External quantum efficiency Elsevier CaAlSiN3:Eu2+ Elsevier Rod-like particles Elsevier Liu, Yujie oth Zhu, Xudong oth Wei, Liangshu oth Jiang, Xiping oth Chen, Yong oth Li, Langkai oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:14 day:1 month:10 pages:23035-23040 extent:6 https://doi.org/10.1016/j.ceramint.2020.06.080 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 14 1 1001 23035-23040 6 |
allfieldsGer |
10.1016/j.ceramint.2020.06.080 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001117.pica (DE-627)ELV051019345 (ELSEVIER)S0272-8842(20)31727-2 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Wang, Haohao verfasserin aut Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications 2020transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. NH4Cl flux Elsevier External quantum efficiency Elsevier CaAlSiN3:Eu2+ Elsevier Rod-like particles Elsevier Liu, Yujie oth Zhu, Xudong oth Wei, Liangshu oth Jiang, Xiping oth Chen, Yong oth Li, Langkai oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:14 day:1 month:10 pages:23035-23040 extent:6 https://doi.org/10.1016/j.ceramint.2020.06.080 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 14 1 1001 23035-23040 6 |
allfieldsSound |
10.1016/j.ceramint.2020.06.080 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001117.pica (DE-627)ELV051019345 (ELSEVIER)S0272-8842(20)31727-2 DE-627 ger DE-627 rakwb eng 333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Wang, Haohao verfasserin aut Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications 2020transfer abstract 6 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. NH4Cl flux Elsevier External quantum efficiency Elsevier CaAlSiN3:Eu2+ Elsevier Rod-like particles Elsevier Liu, Yujie oth Zhu, Xudong oth Wei, Liangshu oth Jiang, Xiping oth Chen, Yong oth Li, Langkai oth Enthalten in Elsevier Science Rey, F. ELSEVIER Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration 2018 Amsterdam [u.a.] (DE-627)ELV000899798 volume:46 year:2020 number:14 day:1 month:10 pages:23035-23040 extent:6 https://doi.org/10.1016/j.ceramint.2020.06.080 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO 43.12 Umweltchemie VZ 43.13 Umwelttoxikologie VZ 44.13 Medizinische Ökologie VZ AR 46 2020 14 1 1001 23035-23040 6 |
language |
English |
source |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:46 year:2020 number:14 day:1 month:10 pages:23035-23040 extent:6 |
sourceStr |
Enthalten in Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration Amsterdam [u.a.] volume:46 year:2020 number:14 day:1 month:10 pages:23035-23040 extent:6 |
format_phy_str_mv |
Article |
bklname |
Umweltchemie Umwelttoxikologie Medizinische Ökologie |
institution |
findex.gbv.de |
topic_facet |
NH4Cl flux External quantum efficiency CaAlSiN3:Eu2+ Rod-like particles |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
authorswithroles_txt_mv |
Wang, Haohao @@aut@@ Liu, Yujie @@oth@@ Zhu, Xudong @@oth@@ Wei, Liangshu @@oth@@ Jiang, Xiping @@oth@@ Chen, Yong @@oth@@ Li, Langkai @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV000899798 |
dewey-sort |
3333.7 |
id |
ELV051019345 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051019345</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626031436.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2020.06.080</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001117.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051019345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(20)31727-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Haohao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NH4Cl flux</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">External quantum efficiency</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CaAlSiN3:Eu2+</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rod-like particles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yujie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Xudong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Liangshu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Xiping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Langkai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:14</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:23035-23040</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2020.06.080</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2020</subfield><subfield code="e">14</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">23035-23040</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
author |
Wang, Haohao |
spellingShingle |
Wang, Haohao ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier NH4Cl flux Elsevier External quantum efficiency Elsevier CaAlSiN3:Eu2+ Elsevier Rod-like particles Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications |
authorStr |
Wang, Haohao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000899798 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications NH4Cl flux Elsevier External quantum efficiency Elsevier CaAlSiN3:Eu2+ Elsevier Rod-like particles Elsevier |
topic |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier NH4Cl flux Elsevier External quantum efficiency Elsevier CaAlSiN3:Eu2+ Elsevier Rod-like particles |
topic_unstemmed |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier NH4Cl flux Elsevier External quantum efficiency Elsevier CaAlSiN3:Eu2+ Elsevier Rod-like particles |
topic_browse |
ddc 333.7 bkl 43.12 bkl 43.13 bkl 44.13 Elsevier NH4Cl flux Elsevier External quantum efficiency Elsevier CaAlSiN3:Eu2+ Elsevier Rod-like particles |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
y l yl x z xz l w lw x j xj y c yc l l ll |
hierarchy_parent_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
hierarchy_parent_id |
ELV000899798 |
dewey-tens |
330 - Economics 610 - Medicine & health |
hierarchy_top_title |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000899798 |
title |
Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications |
ctrlnum |
(DE-627)ELV051019345 (ELSEVIER)S0272-8842(20)31727-2 |
title_full |
Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications |
author_sort |
Wang, Haohao |
journal |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
journalStr |
Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
23035 |
author_browse |
Wang, Haohao |
container_volume |
46 |
physical |
6 |
class |
333.7 610 VZ 43.12 bkl 43.13 bkl 44.13 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Haohao |
doi_str_mv |
10.1016/j.ceramint.2020.06.080 |
dewey-full |
333.7 610 |
title_sort |
preparation of caalsin3:eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications |
title_auth |
Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications |
abstract |
In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. |
abstractGer |
In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. |
abstract_unstemmed |
In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA SSG-OPC-GGO |
container_issue |
14 |
title_short |
Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications |
url |
https://doi.org/10.1016/j.ceramint.2020.06.080 |
remote_bool |
true |
author2 |
Liu, Yujie Zhu, Xudong Wei, Liangshu Jiang, Xiping Chen, Yong Li, Langkai |
author2Str |
Liu, Yujie Zhu, Xudong Wei, Liangshu Jiang, Xiping Chen, Yong Li, Langkai |
ppnlink |
ELV000899798 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth |
doi_str |
10.1016/j.ceramint.2020.06.080 |
up_date |
2024-07-06T19:05:48.596Z |
_version_ |
1803857689152847872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051019345</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626031436.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ceramint.2020.06.080</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001117.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051019345</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0272-8842(20)31727-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Haohao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Preparation of CaAlSiN3:Eu2+ red-emitting phosphor by a two-step method for solid-state lighting applications</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">6</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In solid-state lighting applications, the CaAlSiN3:Eu2+ red-emitting phosphor can effectively improve the color quality of traditional white light produced by yellow phosphor conversion of light emitted by a blue chip. However, CaAlSiN3:Eu2+ phosphor synthesized by various methods usually consists of hard agglomerates with poorly dispersed particles, with consequently suboptimal luminescent properties. In this study, a two-step method is proposed in which a precipitation process is used to produce a precursor in the first step, and a high-temperature solid-state method is used to obtain the final product in the second step. NH4Cl flux is added in the second step to further improve the quality of phosphors. The main results show that: (1) CaAlSiN3:Eu2+ phosphor particles are well dispersed without any agglomerates, while the NH4Cl plays a key role in manipulating particle shape; (2) the photoluminescence intensity and external quantum efficiency of optimized CaAlSiN3:Eu2+ phosphor synthesized by the two-step method substantially outperform those of the corresponding commercial product.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">NH4Cl flux</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">External quantum efficiency</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">CaAlSiN3:Eu2+</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Rod-like particles</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yujie</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Xudong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Liangshu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Xiping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Langkai</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rey, F. ELSEVIER</subfield><subfield code="t">Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000899798</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:14</subfield><subfield code="g">day:1</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:23035-23040</subfield><subfield code="g">extent:6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.ceramint.2020.06.080</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.12</subfield><subfield code="j">Umweltchemie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.13</subfield><subfield code="j">Medizinische Ökologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2020</subfield><subfield code="e">14</subfield><subfield code="b">1</subfield><subfield code="c">1001</subfield><subfield code="h">23035-23040</subfield><subfield code="g">6</subfield></datafield></record></collection>
|
score |
7.401145 |