Barrow fractal entropy and the black hole quasinormal modes
Using the Boltzmann-Gibbs statistical mechanics together with the quasinormal modes of the black holes and the Bekenstein-Hawking area entropy law, we can determine univocally the lowest possible value for the spin j, which is j...
Ausführliche Beschreibung
Autor*in: |
Abreu, Everton M.C. [verfasserIn] Ananias Neto, Jorge [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Physics letters - Amsterdam : North-Holland Publ, 2011, 807 |
---|---|
Übergeordnetes Werk: |
volume:807 |
DOI / URN: |
10.1016/j.physletb.2020.135602 |
---|
Katalog-ID: |
ELV051085941 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV051085941 | ||
003 | DE-627 | ||
005 | 20231020093247.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.physletb.2020.135602 |2 doi | |
035 | |a (DE-627)ELV051085941 | ||
035 | |a (ELSEVIER)S0370-2693(20)30406-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
100 | 1 | |a Abreu, Everton M.C. |e verfasserin |0 (orcid)0000-0002-6638-2588 |4 aut | |
245 | 1 | 0 | |a Barrow fractal entropy and the black hole quasinormal modes |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Using the Boltzmann-Gibbs statistical mechanics together with the quasinormal modes of the black holes and the Bekenstein-Hawking area entropy law, we can determine univocally the lowest possible value for the spin j, which is j m i n = 1 , in the framework of the Loop Quantum Gravity theory. Subsequently, the value of Immirzi parameter is given by γ = ln 3 / ( 2 π 2 ) . In this paper, we have demonstrated that if we use the Barrow formulation for the black hole entropy then the minimum value of the label j depends on the value, which characterizes the fractal structure of the black hole surface called Δ parameter, and may have values other than j m i n = 1 . | ||
650 | 4 | |a Loop Quantum Gravity | |
650 | 4 | |a Barrow entropy | |
650 | 4 | |a Immirzi parameter | |
700 | 1 | |a Ananias Neto, Jorge |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Physics letters |d Amsterdam : North-Holland Publ, 2011 |g 807 |w (DE-627)266015360 |w (DE-600)1466612-1 |7 nnns |
773 | 1 | 8 | |g volume:807 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 807 |
author_variant |
e m a em ema n j a nj nja |
---|---|
matchkey_str |
abreuevertonmcananiasnetojorge:2020----:arwrcaetoyntelchlq |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1016/j.physletb.2020.135602 doi (DE-627)ELV051085941 (ELSEVIER)S0370-2693(20)30406-8 DE-627 ger DE-627 rda eng 530 VZ Abreu, Everton M.C. verfasserin (orcid)0000-0002-6638-2588 aut Barrow fractal entropy and the black hole quasinormal modes 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Using the Boltzmann-Gibbs statistical mechanics together with the quasinormal modes of the black holes and the Bekenstein-Hawking area entropy law, we can determine univocally the lowest possible value for the spin j, which is j m i n = 1 , in the framework of the Loop Quantum Gravity theory. Subsequently, the value of Immirzi parameter is given by γ = ln 3 / ( 2 π 2 ) . In this paper, we have demonstrated that if we use the Barrow formulation for the black hole entropy then the minimum value of the label j depends on the value, which characterizes the fractal structure of the black hole surface called Δ parameter, and may have values other than j m i n = 1 . Loop Quantum Gravity Barrow entropy Immirzi parameter Ananias Neto, Jorge verfasserin aut Enthalten in Physics letters Amsterdam : North-Holland Publ, 2011 807 (DE-627)266015360 (DE-600)1466612-1 nnns volume:807 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2111 GBV_ILN_2153 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 807 |
spelling |
10.1016/j.physletb.2020.135602 doi (DE-627)ELV051085941 (ELSEVIER)S0370-2693(20)30406-8 DE-627 ger DE-627 rda eng 530 VZ Abreu, Everton M.C. verfasserin (orcid)0000-0002-6638-2588 aut Barrow fractal entropy and the black hole quasinormal modes 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Using the Boltzmann-Gibbs statistical mechanics together with the quasinormal modes of the black holes and the Bekenstein-Hawking area entropy law, we can determine univocally the lowest possible value for the spin j, which is j m i n = 1 , in the framework of the Loop Quantum Gravity theory. Subsequently, the value of Immirzi parameter is given by γ = ln 3 / ( 2 π 2 ) . In this paper, we have demonstrated that if we use the Barrow formulation for the black hole entropy then the minimum value of the label j depends on the value, which characterizes the fractal structure of the black hole surface called Δ parameter, and may have values other than j m i n = 1 . Loop Quantum Gravity Barrow entropy Immirzi parameter Ananias Neto, Jorge verfasserin aut Enthalten in Physics letters Amsterdam : North-Holland Publ, 2011 807 (DE-627)266015360 (DE-600)1466612-1 nnns volume:807 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2111 GBV_ILN_2153 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 807 |
allfields_unstemmed |
10.1016/j.physletb.2020.135602 doi (DE-627)ELV051085941 (ELSEVIER)S0370-2693(20)30406-8 DE-627 ger DE-627 rda eng 530 VZ Abreu, Everton M.C. verfasserin (orcid)0000-0002-6638-2588 aut Barrow fractal entropy and the black hole quasinormal modes 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Using the Boltzmann-Gibbs statistical mechanics together with the quasinormal modes of the black holes and the Bekenstein-Hawking area entropy law, we can determine univocally the lowest possible value for the spin j, which is j m i n = 1 , in the framework of the Loop Quantum Gravity theory. Subsequently, the value of Immirzi parameter is given by γ = ln 3 / ( 2 π 2 ) . In this paper, we have demonstrated that if we use the Barrow formulation for the black hole entropy then the minimum value of the label j depends on the value, which characterizes the fractal structure of the black hole surface called Δ parameter, and may have values other than j m i n = 1 . Loop Quantum Gravity Barrow entropy Immirzi parameter Ananias Neto, Jorge verfasserin aut Enthalten in Physics letters Amsterdam : North-Holland Publ, 2011 807 (DE-627)266015360 (DE-600)1466612-1 nnns volume:807 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2111 GBV_ILN_2153 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 807 |
allfieldsGer |
10.1016/j.physletb.2020.135602 doi (DE-627)ELV051085941 (ELSEVIER)S0370-2693(20)30406-8 DE-627 ger DE-627 rda eng 530 VZ Abreu, Everton M.C. verfasserin (orcid)0000-0002-6638-2588 aut Barrow fractal entropy and the black hole quasinormal modes 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Using the Boltzmann-Gibbs statistical mechanics together with the quasinormal modes of the black holes and the Bekenstein-Hawking area entropy law, we can determine univocally the lowest possible value for the spin j, which is j m i n = 1 , in the framework of the Loop Quantum Gravity theory. Subsequently, the value of Immirzi parameter is given by γ = ln 3 / ( 2 π 2 ) . In this paper, we have demonstrated that if we use the Barrow formulation for the black hole entropy then the minimum value of the label j depends on the value, which characterizes the fractal structure of the black hole surface called Δ parameter, and may have values other than j m i n = 1 . Loop Quantum Gravity Barrow entropy Immirzi parameter Ananias Neto, Jorge verfasserin aut Enthalten in Physics letters Amsterdam : North-Holland Publ, 2011 807 (DE-627)266015360 (DE-600)1466612-1 nnns volume:807 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2111 GBV_ILN_2153 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 807 |
allfieldsSound |
10.1016/j.physletb.2020.135602 doi (DE-627)ELV051085941 (ELSEVIER)S0370-2693(20)30406-8 DE-627 ger DE-627 rda eng 530 VZ Abreu, Everton M.C. verfasserin (orcid)0000-0002-6638-2588 aut Barrow fractal entropy and the black hole quasinormal modes 2020 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Using the Boltzmann-Gibbs statistical mechanics together with the quasinormal modes of the black holes and the Bekenstein-Hawking area entropy law, we can determine univocally the lowest possible value for the spin j, which is j m i n = 1 , in the framework of the Loop Quantum Gravity theory. Subsequently, the value of Immirzi parameter is given by γ = ln 3 / ( 2 π 2 ) . In this paper, we have demonstrated that if we use the Barrow formulation for the black hole entropy then the minimum value of the label j depends on the value, which characterizes the fractal structure of the black hole surface called Δ parameter, and may have values other than j m i n = 1 . Loop Quantum Gravity Barrow entropy Immirzi parameter Ananias Neto, Jorge verfasserin aut Enthalten in Physics letters Amsterdam : North-Holland Publ, 2011 807 (DE-627)266015360 (DE-600)1466612-1 nnns volume:807 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2111 GBV_ILN_2153 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 807 |
language |
English |
source |
Enthalten in Physics letters 807 volume:807 |
sourceStr |
Enthalten in Physics letters 807 volume:807 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Loop Quantum Gravity Barrow entropy Immirzi parameter |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Physics letters |
authorswithroles_txt_mv |
Abreu, Everton M.C. @@aut@@ Ananias Neto, Jorge @@aut@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
266015360 |
dewey-sort |
3530 |
id |
ELV051085941 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051085941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231020093247.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physletb.2020.135602</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051085941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0370-2693(20)30406-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abreu, Everton M.C.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6638-2588</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Barrow fractal entropy and the black hole quasinormal modes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Using the Boltzmann-Gibbs statistical mechanics together with the quasinormal modes of the black holes and the Bekenstein-Hawking area entropy law, we can determine univocally the lowest possible value for the spin j, which is j m i n = 1 , in the framework of the Loop Quantum Gravity theory. Subsequently, the value of Immirzi parameter is given by γ = ln 3 / ( 2 π 2 ) . In this paper, we have demonstrated that if we use the Barrow formulation for the black hole entropy then the minimum value of the label j depends on the value, which characterizes the fractal structure of the black hole surface called Δ parameter, and may have values other than j m i n = 1 .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loop Quantum Gravity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barrow entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immirzi parameter</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ananias Neto, Jorge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics letters</subfield><subfield code="d">Amsterdam : North-Holland Publ, 2011</subfield><subfield code="g">807</subfield><subfield code="w">(DE-627)266015360</subfield><subfield code="w">(DE-600)1466612-1</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:807</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">807</subfield></datafield></record></collection>
|
author |
Abreu, Everton M.C. |
spellingShingle |
Abreu, Everton M.C. ddc 530 misc Loop Quantum Gravity misc Barrow entropy misc Immirzi parameter Barrow fractal entropy and the black hole quasinormal modes |
authorStr |
Abreu, Everton M.C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266015360 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 VZ Barrow fractal entropy and the black hole quasinormal modes Loop Quantum Gravity Barrow entropy Immirzi parameter |
topic |
ddc 530 misc Loop Quantum Gravity misc Barrow entropy misc Immirzi parameter |
topic_unstemmed |
ddc 530 misc Loop Quantum Gravity misc Barrow entropy misc Immirzi parameter |
topic_browse |
ddc 530 misc Loop Quantum Gravity misc Barrow entropy misc Immirzi parameter |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Physics letters |
hierarchy_parent_id |
266015360 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Physics letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266015360 (DE-600)1466612-1 |
title |
Barrow fractal entropy and the black hole quasinormal modes |
ctrlnum |
(DE-627)ELV051085941 (ELSEVIER)S0370-2693(20)30406-8 |
title_full |
Barrow fractal entropy and the black hole quasinormal modes |
author_sort |
Abreu, Everton M.C. |
journal |
Physics letters |
journalStr |
Physics letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
author_browse |
Abreu, Everton M.C. Ananias Neto, Jorge |
container_volume |
807 |
class |
530 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Abreu, Everton M.C. |
doi_str_mv |
10.1016/j.physletb.2020.135602 |
normlink |
(ORCID)0000-0002-6638-2588 |
normlink_prefix_str_mv |
(orcid)0000-0002-6638-2588 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
barrow fractal entropy and the black hole quasinormal modes |
title_auth |
Barrow fractal entropy and the black hole quasinormal modes |
abstract |
Using the Boltzmann-Gibbs statistical mechanics together with the quasinormal modes of the black holes and the Bekenstein-Hawking area entropy law, we can determine univocally the lowest possible value for the spin j, which is j m i n = 1 , in the framework of the Loop Quantum Gravity theory. Subsequently, the value of Immirzi parameter is given by γ = ln 3 / ( 2 π 2 ) . In this paper, we have demonstrated that if we use the Barrow formulation for the black hole entropy then the minimum value of the label j depends on the value, which characterizes the fractal structure of the black hole surface called Δ parameter, and may have values other than j m i n = 1 . |
abstractGer |
Using the Boltzmann-Gibbs statistical mechanics together with the quasinormal modes of the black holes and the Bekenstein-Hawking area entropy law, we can determine univocally the lowest possible value for the spin j, which is j m i n = 1 , in the framework of the Loop Quantum Gravity theory. Subsequently, the value of Immirzi parameter is given by γ = ln 3 / ( 2 π 2 ) . In this paper, we have demonstrated that if we use the Barrow formulation for the black hole entropy then the minimum value of the label j depends on the value, which characterizes the fractal structure of the black hole surface called Δ parameter, and may have values other than j m i n = 1 . |
abstract_unstemmed |
Using the Boltzmann-Gibbs statistical mechanics together with the quasinormal modes of the black holes and the Bekenstein-Hawking area entropy law, we can determine univocally the lowest possible value for the spin j, which is j m i n = 1 , in the framework of the Loop Quantum Gravity theory. Subsequently, the value of Immirzi parameter is given by γ = ln 3 / ( 2 π 2 ) . In this paper, we have demonstrated that if we use the Barrow formulation for the black hole entropy then the minimum value of the label j depends on the value, which characterizes the fractal structure of the black hole surface called Δ parameter, and may have values other than j m i n = 1 . |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2111 GBV_ILN_2153 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Barrow fractal entropy and the black hole quasinormal modes |
remote_bool |
true |
author2 |
Ananias Neto, Jorge |
author2Str |
Ananias Neto, Jorge |
ppnlink |
266015360 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.physletb.2020.135602 |
up_date |
2024-07-06T19:17:35.180Z |
_version_ |
1803858430058823680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051085941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231020093247.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.physletb.2020.135602</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051085941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0370-2693(20)30406-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abreu, Everton M.C.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6638-2588</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Barrow fractal entropy and the black hole quasinormal modes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Using the Boltzmann-Gibbs statistical mechanics together with the quasinormal modes of the black holes and the Bekenstein-Hawking area entropy law, we can determine univocally the lowest possible value for the spin j, which is j m i n = 1 , in the framework of the Loop Quantum Gravity theory. Subsequently, the value of Immirzi parameter is given by γ = ln 3 / ( 2 π 2 ) . In this paper, we have demonstrated that if we use the Barrow formulation for the black hole entropy then the minimum value of the label j depends on the value, which characterizes the fractal structure of the black hole surface called Δ parameter, and may have values other than j m i n = 1 .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loop Quantum Gravity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barrow entropy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Immirzi parameter</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ananias Neto, Jorge</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Physics letters</subfield><subfield code="d">Amsterdam : North-Holland Publ, 2011</subfield><subfield code="g">807</subfield><subfield code="w">(DE-627)266015360</subfield><subfield code="w">(DE-600)1466612-1</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:807</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">807</subfield></datafield></record></collection>
|
score |
7.399419 |