Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate
Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and s...
Ausführliche Beschreibung
Autor*in: |
Bhattacharya, Anish [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium - 2013transfer abstract, surface engineering, surface instrumentation & vacuum technology, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:180 ; year:2020 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.vacuum.2020.109645 |
---|
Katalog-ID: |
ELV051235161 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV051235161 | ||
003 | DE-627 | ||
005 | 20230626031740.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.vacuum.2020.109645 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001119.pica |
035 | |a (DE-627)ELV051235161 | ||
035 | |a (ELSEVIER)S0042-207X(20)30507-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 333.7 |q VZ |
082 | 0 | 4 | |a 610 |q VZ |
082 | 0 | 4 | |a 630 |a 640 |a 610 |q VZ |
100 | 1 | |a Bhattacharya, Anish |e verfasserin |4 aut | |
245 | 1 | 0 | |a Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. | ||
520 | |a Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. | ||
650 | 7 | |a BaSnO3 |2 Elsevier | |
650 | 7 | |a Molten salt synthesis |2 Elsevier | |
650 | 7 | |a Co-precipitation method |2 Elsevier | |
650 | 7 | |a Morphology |2 Elsevier | |
650 | 7 | |a Ethanol sensor |2 Elsevier | |
650 | 7 | |a Photoelectron spectroscopy |2 Elsevier | |
700 | 1 | |a Chu, Xiangfeng |4 oth | |
700 | 1 | |a Dong, Yongping |4 oth | |
700 | 1 | |a Liang, Shiming |4 oth | |
700 | 1 | |a Chakraborty, Amit K. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |t Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium |d 2013transfer abstract |d surface engineering, surface instrumentation & vacuum technology |g Amsterdam [u.a.] |w (DE-627)ELV011955074 |
773 | 1 | 8 | |g volume:180 |g year:2020 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.vacuum.2020.109645 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
951 | |a AR | ||
952 | |d 180 |j 2020 |h 0 |
author_variant |
a b ab |
---|---|
matchkey_str |
bhattacharyaanishchuxiangfengdongyongpin:2020----:nlecosnhssehdoteirsrcuenehnlesnpo |
hierarchy_sort_str |
2020transfer abstract |
publishDate |
2020 |
allfields |
10.1016/j.vacuum.2020.109645 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001119.pica (DE-627)ELV051235161 (ELSEVIER)S0042-207X(20)30507-8 DE-627 ger DE-627 rakwb eng 333.7 VZ 610 VZ 630 640 610 VZ Bhattacharya, Anish verfasserin aut Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. BaSnO3 Elsevier Molten salt synthesis Elsevier Co-precipitation method Elsevier Morphology Elsevier Ethanol sensor Elsevier Photoelectron spectroscopy Elsevier Chu, Xiangfeng oth Dong, Yongping oth Liang, Shiming oth Chakraborty, Amit K. oth Enthalten in Elsevier Science Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium 2013transfer abstract surface engineering, surface instrumentation & vacuum technology Amsterdam [u.a.] (DE-627)ELV011955074 volume:180 year:2020 pages:0 https://doi.org/10.1016/j.vacuum.2020.109645 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 AR 180 2020 0 |
spelling |
10.1016/j.vacuum.2020.109645 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001119.pica (DE-627)ELV051235161 (ELSEVIER)S0042-207X(20)30507-8 DE-627 ger DE-627 rakwb eng 333.7 VZ 610 VZ 630 640 610 VZ Bhattacharya, Anish verfasserin aut Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. BaSnO3 Elsevier Molten salt synthesis Elsevier Co-precipitation method Elsevier Morphology Elsevier Ethanol sensor Elsevier Photoelectron spectroscopy Elsevier Chu, Xiangfeng oth Dong, Yongping oth Liang, Shiming oth Chakraborty, Amit K. oth Enthalten in Elsevier Science Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium 2013transfer abstract surface engineering, surface instrumentation & vacuum technology Amsterdam [u.a.] (DE-627)ELV011955074 volume:180 year:2020 pages:0 https://doi.org/10.1016/j.vacuum.2020.109645 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 AR 180 2020 0 |
allfields_unstemmed |
10.1016/j.vacuum.2020.109645 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001119.pica (DE-627)ELV051235161 (ELSEVIER)S0042-207X(20)30507-8 DE-627 ger DE-627 rakwb eng 333.7 VZ 610 VZ 630 640 610 VZ Bhattacharya, Anish verfasserin aut Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. BaSnO3 Elsevier Molten salt synthesis Elsevier Co-precipitation method Elsevier Morphology Elsevier Ethanol sensor Elsevier Photoelectron spectroscopy Elsevier Chu, Xiangfeng oth Dong, Yongping oth Liang, Shiming oth Chakraborty, Amit K. oth Enthalten in Elsevier Science Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium 2013transfer abstract surface engineering, surface instrumentation & vacuum technology Amsterdam [u.a.] (DE-627)ELV011955074 volume:180 year:2020 pages:0 https://doi.org/10.1016/j.vacuum.2020.109645 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 AR 180 2020 0 |
allfieldsGer |
10.1016/j.vacuum.2020.109645 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001119.pica (DE-627)ELV051235161 (ELSEVIER)S0042-207X(20)30507-8 DE-627 ger DE-627 rakwb eng 333.7 VZ 610 VZ 630 640 610 VZ Bhattacharya, Anish verfasserin aut Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. BaSnO3 Elsevier Molten salt synthesis Elsevier Co-precipitation method Elsevier Morphology Elsevier Ethanol sensor Elsevier Photoelectron spectroscopy Elsevier Chu, Xiangfeng oth Dong, Yongping oth Liang, Shiming oth Chakraborty, Amit K. oth Enthalten in Elsevier Science Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium 2013transfer abstract surface engineering, surface instrumentation & vacuum technology Amsterdam [u.a.] (DE-627)ELV011955074 volume:180 year:2020 pages:0 https://doi.org/10.1016/j.vacuum.2020.109645 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 AR 180 2020 0 |
allfieldsSound |
10.1016/j.vacuum.2020.109645 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001119.pica (DE-627)ELV051235161 (ELSEVIER)S0042-207X(20)30507-8 DE-627 ger DE-627 rakwb eng 333.7 VZ 610 VZ 630 640 610 VZ Bhattacharya, Anish verfasserin aut Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. BaSnO3 Elsevier Molten salt synthesis Elsevier Co-precipitation method Elsevier Morphology Elsevier Ethanol sensor Elsevier Photoelectron spectroscopy Elsevier Chu, Xiangfeng oth Dong, Yongping oth Liang, Shiming oth Chakraborty, Amit K. oth Enthalten in Elsevier Science Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium 2013transfer abstract surface engineering, surface instrumentation & vacuum technology Amsterdam [u.a.] (DE-627)ELV011955074 volume:180 year:2020 pages:0 https://doi.org/10.1016/j.vacuum.2020.109645 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 AR 180 2020 0 |
language |
English |
source |
Enthalten in Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium Amsterdam [u.a.] volume:180 year:2020 pages:0 |
sourceStr |
Enthalten in Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium Amsterdam [u.a.] volume:180 year:2020 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
BaSnO3 Molten salt synthesis Co-precipitation method Morphology Ethanol sensor Photoelectron spectroscopy |
dewey-raw |
333.7 |
isfreeaccess_bool |
false |
container_title |
Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium |
authorswithroles_txt_mv |
Bhattacharya, Anish @@aut@@ Chu, Xiangfeng @@oth@@ Dong, Yongping @@oth@@ Liang, Shiming @@oth@@ Chakraborty, Amit K. @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV011955074 |
dewey-sort |
3333.7 |
id |
ELV051235161 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051235161</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626031740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.vacuum.2020.109645</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001119.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051235161</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0042-207X(20)30507-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhattacharya, Anish</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BaSnO3</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Molten salt synthesis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Co-precipitation method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morphology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ethanol sensor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Photoelectron spectroscopy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chu, Xiangfeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Yongping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Shiming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborty, Amit K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="t">Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium</subfield><subfield code="d">2013transfer abstract</subfield><subfield code="d">surface engineering, surface instrumentation & vacuum technology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011955074</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:180</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.vacuum.2020.109645</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">180</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Bhattacharya, Anish |
spellingShingle |
Bhattacharya, Anish ddc 333.7 ddc 610 ddc 630 Elsevier BaSnO3 Elsevier Molten salt synthesis Elsevier Co-precipitation method Elsevier Morphology Elsevier Ethanol sensor Elsevier Photoelectron spectroscopy Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate |
authorStr |
Bhattacharya, Anish |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV011955074 |
format |
electronic Article |
dewey-ones |
333 - Economics of land & energy 610 - Medicine & health 630 - Agriculture & related technologies 640 - Home & family management |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
333.7 VZ 610 VZ 630 640 610 VZ Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate BaSnO3 Elsevier Molten salt synthesis Elsevier Co-precipitation method Elsevier Morphology Elsevier Ethanol sensor Elsevier Photoelectron spectroscopy Elsevier |
topic |
ddc 333.7 ddc 610 ddc 630 Elsevier BaSnO3 Elsevier Molten salt synthesis Elsevier Co-precipitation method Elsevier Morphology Elsevier Ethanol sensor Elsevier Photoelectron spectroscopy |
topic_unstemmed |
ddc 333.7 ddc 610 ddc 630 Elsevier BaSnO3 Elsevier Molten salt synthesis Elsevier Co-precipitation method Elsevier Morphology Elsevier Ethanol sensor Elsevier Photoelectron spectroscopy |
topic_browse |
ddc 333.7 ddc 610 ddc 630 Elsevier BaSnO3 Elsevier Molten salt synthesis Elsevier Co-precipitation method Elsevier Morphology Elsevier Ethanol sensor Elsevier Photoelectron spectroscopy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
x c xc y d yd s l sl a k c ak akc |
hierarchy_parent_title |
Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium |
hierarchy_parent_id |
ELV011955074 |
dewey-tens |
330 - Economics 610 - Medicine & health 630 - Agriculture 640 - Home & family management |
hierarchy_top_title |
Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV011955074 |
title |
Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate |
ctrlnum |
(DE-627)ELV051235161 (ELSEVIER)S0042-207X(20)30507-8 |
title_full |
Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate |
author_sort |
Bhattacharya, Anish |
journal |
Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium |
journalStr |
Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Bhattacharya, Anish |
container_volume |
180 |
class |
333.7 VZ 610 VZ 630 640 610 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Bhattacharya, Anish |
doi_str_mv |
10.1016/j.vacuum.2020.109645 |
dewey-full |
333.7 610 630 640 |
title_sort |
influence of synthesis methods on the microstructure and ethanol sensing properties of barium stannate |
title_auth |
Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate |
abstract |
Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. |
abstractGer |
Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. |
abstract_unstemmed |
Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA GBV_ILN_22 GBV_ILN_40 |
title_short |
Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate |
url |
https://doi.org/10.1016/j.vacuum.2020.109645 |
remote_bool |
true |
author2 |
Chu, Xiangfeng Dong, Yongping Liang, Shiming Chakraborty, Amit K. |
author2Str |
Chu, Xiangfeng Dong, Yongping Liang, Shiming Chakraborty, Amit K. |
ppnlink |
ELV011955074 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.vacuum.2020.109645 |
up_date |
2024-07-06T19:42:16.973Z |
_version_ |
1803859983832449024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051235161</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626031740.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.vacuum.2020.109645</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001119.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051235161</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0042-207X(20)30507-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhattacharya, Anish</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of synthesis methods on the microstructure and Ethanol Sensing properties of barium stannate</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Herein, we report the synthesis of BaSnO3 (BSO) from molten salts (BSO1) and test its efficacy as an ethanol sensor, for the first time. BSO was also synthesized using a more well-established coprecipitation method (BSO2), and the influence of the synthesis method on morphology, microstructure and surface chemical composition of BSO was compared using electron microscopy, x-ray diffraction and photoelectron spectroscopy. Both BSO1 and BSO2 exhibited their best responses to 100 ppm of ethanol at 260 °C, but BSO1 showed higher response (12.5) and lower detection limit (0.5 ppm) compared to those of BSO2 (8.2 and 1 ppm) suggesting its superior ethanol sensing properties. The improved sensing of BSO1 was correlated with the corresponding surface morphology and chemical composition.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BaSnO3</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Molten salt synthesis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Co-precipitation method</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morphology</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ethanol sensor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Photoelectron spectroscopy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chu, Xiangfeng</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Yongping</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Shiming</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborty, Amit K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="t">Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium</subfield><subfield code="d">2013transfer abstract</subfield><subfield code="d">surface engineering, surface instrumentation & vacuum technology</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV011955074</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:180</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.vacuum.2020.109645</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">180</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4016733 |