Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System
People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users i...
Ausführliche Beschreibung
Autor*in: |
Avvenuti, Marco [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: BIG-OH: BInarization of gradient orientation histograms - Baber, Junaid ELSEVIER, 2014transfer abstract, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:67 ; year:2020 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.pmcj.2020.101225 |
---|
Katalog-ID: |
ELV051293811 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV051293811 | ||
003 | DE-627 | ||
005 | 20230626031835.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.pmcj.2020.101225 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001139.pica |
035 | |a (DE-627)ELV051293811 | ||
035 | |a (ELSEVIER)S1574-1192(20)30081-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Avvenuti, Marco |e verfasserin |4 aut | |
245 | 1 | 0 | |a Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. | ||
520 | |a People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. | ||
650 | 7 | |a Human-as-a-sensor |2 Elsevier | |
650 | 7 | |a Hybrid sensing |2 Elsevier | |
650 | 7 | |a Emergency management |2 Elsevier | |
650 | 7 | |a Artificial intelligence |2 Elsevier | |
650 | 7 | |a Online social networks |2 Elsevier | |
700 | 1 | |a Bellomo, Salvatore |4 oth | |
700 | 1 | |a Cresci, Stefano |4 oth | |
700 | 1 | |a Nizzoli, Leonardo |4 oth | |
700 | 1 | |a Tesconi, Maurizio |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Baber, Junaid ELSEVIER |t BIG-OH: BInarization of gradient orientation histograms |d 2014transfer abstract |g Amsterdam [u.a.] |w (DE-627)ELV02262399X |
773 | 1 | 8 | |g volume:67 |g year:2020 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.pmcj.2020.101225 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_78 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_130 | ||
912 | |a GBV_ILN_300 | ||
951 | |a AR | ||
952 | |d 67 |j 2020 |h 0 |
author_variant |
m a ma |
---|---|
matchkey_str |
avvenutimarcobellomosalvatorecrescistefa:2020----:oadbtescaciidtwthrehbisnigoeeg |
hierarchy_sort_str |
2020transfer abstract |
publishDate |
2020 |
allfields |
10.1016/j.pmcj.2020.101225 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001139.pica (DE-627)ELV051293811 (ELSEVIER)S1574-1192(20)30081-X DE-627 ger DE-627 rakwb eng 004 VZ Avvenuti, Marco verfasserin aut Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. Human-as-a-sensor Elsevier Hybrid sensing Elsevier Emergency management Elsevier Artificial intelligence Elsevier Online social networks Elsevier Bellomo, Salvatore oth Cresci, Stefano oth Nizzoli, Leonardo oth Tesconi, Maurizio oth Enthalten in Elsevier Baber, Junaid ELSEVIER BIG-OH: BInarization of gradient orientation histograms 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV02262399X volume:67 year:2020 pages:0 https://doi.org/10.1016/j.pmcj.2020.101225 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_78 GBV_ILN_100 GBV_ILN_130 GBV_ILN_300 AR 67 2020 0 |
spelling |
10.1016/j.pmcj.2020.101225 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001139.pica (DE-627)ELV051293811 (ELSEVIER)S1574-1192(20)30081-X DE-627 ger DE-627 rakwb eng 004 VZ Avvenuti, Marco verfasserin aut Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. Human-as-a-sensor Elsevier Hybrid sensing Elsevier Emergency management Elsevier Artificial intelligence Elsevier Online social networks Elsevier Bellomo, Salvatore oth Cresci, Stefano oth Nizzoli, Leonardo oth Tesconi, Maurizio oth Enthalten in Elsevier Baber, Junaid ELSEVIER BIG-OH: BInarization of gradient orientation histograms 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV02262399X volume:67 year:2020 pages:0 https://doi.org/10.1016/j.pmcj.2020.101225 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_78 GBV_ILN_100 GBV_ILN_130 GBV_ILN_300 AR 67 2020 0 |
allfields_unstemmed |
10.1016/j.pmcj.2020.101225 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001139.pica (DE-627)ELV051293811 (ELSEVIER)S1574-1192(20)30081-X DE-627 ger DE-627 rakwb eng 004 VZ Avvenuti, Marco verfasserin aut Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. Human-as-a-sensor Elsevier Hybrid sensing Elsevier Emergency management Elsevier Artificial intelligence Elsevier Online social networks Elsevier Bellomo, Salvatore oth Cresci, Stefano oth Nizzoli, Leonardo oth Tesconi, Maurizio oth Enthalten in Elsevier Baber, Junaid ELSEVIER BIG-OH: BInarization of gradient orientation histograms 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV02262399X volume:67 year:2020 pages:0 https://doi.org/10.1016/j.pmcj.2020.101225 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_78 GBV_ILN_100 GBV_ILN_130 GBV_ILN_300 AR 67 2020 0 |
allfieldsGer |
10.1016/j.pmcj.2020.101225 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001139.pica (DE-627)ELV051293811 (ELSEVIER)S1574-1192(20)30081-X DE-627 ger DE-627 rakwb eng 004 VZ Avvenuti, Marco verfasserin aut Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. Human-as-a-sensor Elsevier Hybrid sensing Elsevier Emergency management Elsevier Artificial intelligence Elsevier Online social networks Elsevier Bellomo, Salvatore oth Cresci, Stefano oth Nizzoli, Leonardo oth Tesconi, Maurizio oth Enthalten in Elsevier Baber, Junaid ELSEVIER BIG-OH: BInarization of gradient orientation histograms 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV02262399X volume:67 year:2020 pages:0 https://doi.org/10.1016/j.pmcj.2020.101225 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_78 GBV_ILN_100 GBV_ILN_130 GBV_ILN_300 AR 67 2020 0 |
allfieldsSound |
10.1016/j.pmcj.2020.101225 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001139.pica (DE-627)ELV051293811 (ELSEVIER)S1574-1192(20)30081-X DE-627 ger DE-627 rakwb eng 004 VZ Avvenuti, Marco verfasserin aut Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. Human-as-a-sensor Elsevier Hybrid sensing Elsevier Emergency management Elsevier Artificial intelligence Elsevier Online social networks Elsevier Bellomo, Salvatore oth Cresci, Stefano oth Nizzoli, Leonardo oth Tesconi, Maurizio oth Enthalten in Elsevier Baber, Junaid ELSEVIER BIG-OH: BInarization of gradient orientation histograms 2014transfer abstract Amsterdam [u.a.] (DE-627)ELV02262399X volume:67 year:2020 pages:0 https://doi.org/10.1016/j.pmcj.2020.101225 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_78 GBV_ILN_100 GBV_ILN_130 GBV_ILN_300 AR 67 2020 0 |
language |
English |
source |
Enthalten in BIG-OH: BInarization of gradient orientation histograms Amsterdam [u.a.] volume:67 year:2020 pages:0 |
sourceStr |
Enthalten in BIG-OH: BInarization of gradient orientation histograms Amsterdam [u.a.] volume:67 year:2020 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Human-as-a-sensor Hybrid sensing Emergency management Artificial intelligence Online social networks |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
BIG-OH: BInarization of gradient orientation histograms |
authorswithroles_txt_mv |
Avvenuti, Marco @@aut@@ Bellomo, Salvatore @@oth@@ Cresci, Stefano @@oth@@ Nizzoli, Leonardo @@oth@@ Tesconi, Maurizio @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV02262399X |
dewey-sort |
14 |
id |
ELV051293811 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051293811</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626031835.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.pmcj.2020.101225</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001139.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051293811</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1574-1192(20)30081-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Avvenuti, Marco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Human-as-a-sensor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hybrid sensing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Emergency management</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Online social networks</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bellomo, Salvatore</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cresci, Stefano</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nizzoli, Leonardo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tesconi, Maurizio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Baber, Junaid ELSEVIER</subfield><subfield code="t">BIG-OH: BInarization of gradient orientation histograms</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV02262399X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.pmcj.2020.101225</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_78</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_300</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Avvenuti, Marco |
spellingShingle |
Avvenuti, Marco ddc 004 Elsevier Human-as-a-sensor Elsevier Hybrid sensing Elsevier Emergency management Elsevier Artificial intelligence Elsevier Online social networks Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System |
authorStr |
Avvenuti, Marco |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV02262399X |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 VZ Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System Human-as-a-sensor Elsevier Hybrid sensing Elsevier Emergency management Elsevier Artificial intelligence Elsevier Online social networks Elsevier |
topic |
ddc 004 Elsevier Human-as-a-sensor Elsevier Hybrid sensing Elsevier Emergency management Elsevier Artificial intelligence Elsevier Online social networks |
topic_unstemmed |
ddc 004 Elsevier Human-as-a-sensor Elsevier Hybrid sensing Elsevier Emergency management Elsevier Artificial intelligence Elsevier Online social networks |
topic_browse |
ddc 004 Elsevier Human-as-a-sensor Elsevier Hybrid sensing Elsevier Emergency management Elsevier Artificial intelligence Elsevier Online social networks |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
s b sb s c sc l n ln m t mt |
hierarchy_parent_title |
BIG-OH: BInarization of gradient orientation histograms |
hierarchy_parent_id |
ELV02262399X |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
BIG-OH: BInarization of gradient orientation histograms |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV02262399X |
title |
Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System |
ctrlnum |
(DE-627)ELV051293811 (ELSEVIER)S1574-1192(20)30081-X |
title_full |
Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System |
author_sort |
Avvenuti, Marco |
journal |
BIG-OH: BInarization of gradient orientation histograms |
journalStr |
BIG-OH: BInarization of gradient orientation histograms |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Avvenuti, Marco |
container_volume |
67 |
class |
004 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Avvenuti, Marco |
doi_str_mv |
10.1016/j.pmcj.2020.101225 |
dewey-full |
004 |
title_sort |
towards better social crisis data with hermes: hybrid sensing for emergency management system |
title_auth |
Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System |
abstract |
People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. |
abstractGer |
People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. |
abstract_unstemmed |
People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_78 GBV_ILN_100 GBV_ILN_130 GBV_ILN_300 |
title_short |
Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System |
url |
https://doi.org/10.1016/j.pmcj.2020.101225 |
remote_bool |
true |
author2 |
Bellomo, Salvatore Cresci, Stefano Nizzoli, Leonardo Tesconi, Maurizio |
author2Str |
Bellomo, Salvatore Cresci, Stefano Nizzoli, Leonardo Tesconi, Maurizio |
ppnlink |
ELV02262399X |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.pmcj.2020.101225 |
up_date |
2024-07-06T19:52:18.072Z |
_version_ |
1803860614129385472 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051293811</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626031835.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.pmcj.2020.101225</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001139.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051293811</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1574-1192(20)30081-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Avvenuti, Marco</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">People involved in mass emergencies increasingly publish information-rich contents in Online Social Networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to 7 × ) and the variety (up to 18 × ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Human-as-a-sensor</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hybrid sensing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Emergency management</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial intelligence</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Online social networks</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bellomo, Salvatore</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cresci, Stefano</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nizzoli, Leonardo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tesconi, Maurizio</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Baber, Junaid ELSEVIER</subfield><subfield code="t">BIG-OH: BInarization of gradient orientation histograms</subfield><subfield code="d">2014transfer abstract</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV02262399X</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:67</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.pmcj.2020.101225</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_78</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_130</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_300</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">67</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.402337 |