NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems
• New noise-immunity oversampling method for imbalanced classification problems. • It adaptively processes noise based on probability and misclassification error. • It simplifies the minority class clustering process using unsupervised clustering. • It adaptively determines the sub-cluster size bein...
Ausführliche Beschreibung
Autor*in: |
Wei, Jianan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Do denture processing techniques affect the mechanical properties of denture teeth? - Clements, Jody L. ELSEVIER, 2017, an international journal, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:158 ; year:2020 ; day:15 ; month:11 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.eswa.2020.113504 |
---|
Katalog-ID: |
ELV051329026 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV051329026 | ||
003 | DE-627 | ||
005 | 20230624173257.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.eswa.2020.113504 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001130.pica |
035 | |a (DE-627)ELV051329026 | ||
035 | |a (ELSEVIER)S0957-4174(20)30328-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.96 |2 bkl | ||
100 | 1 | |a Wei, Jianan |e verfasserin |4 aut | |
245 | 1 | 0 | |a NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • New noise-immunity oversampling method for imbalanced classification problems. • It adaptively processes noise based on probability and misclassification error. • It simplifies the minority class clustering process using unsupervised clustering. • It adaptively determines the sub-cluster size being sampled using misclassification error. • Generated synthetic instances using MWMOTE improved subsequent classification. | ||
650 | 7 | |a Imbalanced classification |2 Elsevier | |
650 | 7 | |a Noise-immunity |2 Elsevier | |
650 | 7 | |a Oversampling |2 Elsevier | |
650 | 7 | |a Clustering |2 Elsevier | |
650 | 7 | |a MWMOTE |2 Elsevier | |
700 | 1 | |a Huang, Haisong |4 oth | |
700 | 1 | |a Yao, Liguo |4 oth | |
700 | 1 | |a Hu, Yao |4 oth | |
700 | 1 | |a Fan, Qingsong |4 oth | |
700 | 1 | |a Huang, Dong |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Clements, Jody L. ELSEVIER |t Do denture processing techniques affect the mechanical properties of denture teeth? |d 2017 |d an international journal |g Amsterdam [u.a.] |w (DE-627)ELV000222070 |
773 | 1 | 8 | |g volume:158 |g year:2020 |g day:15 |g month:11 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.eswa.2020.113504 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.96 |j Zahnmedizin |q VZ |
951 | |a AR | ||
952 | |d 158 |j 2020 |b 15 |c 1115 |h 0 |
author_variant |
j w jw |
---|---|
matchkey_str |
weijiananhuanghaisongyaoliguohuyaofanqin:2020----:iwoenmrvnniemuiyaoiyegtdioiyvrapigehiufrma |
hierarchy_sort_str |
2020 |
bklnumber |
44.96 |
publishDate |
2020 |
allfields |
10.1016/j.eswa.2020.113504 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001130.pica (DE-627)ELV051329026 (ELSEVIER)S0957-4174(20)30328-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Wei, Jianan verfasserin aut NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • New noise-immunity oversampling method for imbalanced classification problems. • It adaptively processes noise based on probability and misclassification error. • It simplifies the minority class clustering process using unsupervised clustering. • It adaptively determines the sub-cluster size being sampled using misclassification error. • Generated synthetic instances using MWMOTE improved subsequent classification. Imbalanced classification Elsevier Noise-immunity Elsevier Oversampling Elsevier Clustering Elsevier MWMOTE Elsevier Huang, Haisong oth Yao, Liguo oth Hu, Yao oth Fan, Qingsong oth Huang, Dong oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:158 year:2020 day:15 month:11 pages:0 https://doi.org/10.1016/j.eswa.2020.113504 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 158 2020 15 1115 0 |
spelling |
10.1016/j.eswa.2020.113504 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001130.pica (DE-627)ELV051329026 (ELSEVIER)S0957-4174(20)30328-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Wei, Jianan verfasserin aut NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • New noise-immunity oversampling method for imbalanced classification problems. • It adaptively processes noise based on probability and misclassification error. • It simplifies the minority class clustering process using unsupervised clustering. • It adaptively determines the sub-cluster size being sampled using misclassification error. • Generated synthetic instances using MWMOTE improved subsequent classification. Imbalanced classification Elsevier Noise-immunity Elsevier Oversampling Elsevier Clustering Elsevier MWMOTE Elsevier Huang, Haisong oth Yao, Liguo oth Hu, Yao oth Fan, Qingsong oth Huang, Dong oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:158 year:2020 day:15 month:11 pages:0 https://doi.org/10.1016/j.eswa.2020.113504 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 158 2020 15 1115 0 |
allfields_unstemmed |
10.1016/j.eswa.2020.113504 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001130.pica (DE-627)ELV051329026 (ELSEVIER)S0957-4174(20)30328-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Wei, Jianan verfasserin aut NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • New noise-immunity oversampling method for imbalanced classification problems. • It adaptively processes noise based on probability and misclassification error. • It simplifies the minority class clustering process using unsupervised clustering. • It adaptively determines the sub-cluster size being sampled using misclassification error. • Generated synthetic instances using MWMOTE improved subsequent classification. Imbalanced classification Elsevier Noise-immunity Elsevier Oversampling Elsevier Clustering Elsevier MWMOTE Elsevier Huang, Haisong oth Yao, Liguo oth Hu, Yao oth Fan, Qingsong oth Huang, Dong oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:158 year:2020 day:15 month:11 pages:0 https://doi.org/10.1016/j.eswa.2020.113504 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 158 2020 15 1115 0 |
allfieldsGer |
10.1016/j.eswa.2020.113504 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001130.pica (DE-627)ELV051329026 (ELSEVIER)S0957-4174(20)30328-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Wei, Jianan verfasserin aut NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • New noise-immunity oversampling method for imbalanced classification problems. • It adaptively processes noise based on probability and misclassification error. • It simplifies the minority class clustering process using unsupervised clustering. • It adaptively determines the sub-cluster size being sampled using misclassification error. • Generated synthetic instances using MWMOTE improved subsequent classification. Imbalanced classification Elsevier Noise-immunity Elsevier Oversampling Elsevier Clustering Elsevier MWMOTE Elsevier Huang, Haisong oth Yao, Liguo oth Hu, Yao oth Fan, Qingsong oth Huang, Dong oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:158 year:2020 day:15 month:11 pages:0 https://doi.org/10.1016/j.eswa.2020.113504 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 158 2020 15 1115 0 |
allfieldsSound |
10.1016/j.eswa.2020.113504 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001130.pica (DE-627)ELV051329026 (ELSEVIER)S0957-4174(20)30328-6 DE-627 ger DE-627 rakwb eng 610 VZ 44.96 bkl Wei, Jianan verfasserin aut NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • New noise-immunity oversampling method for imbalanced classification problems. • It adaptively processes noise based on probability and misclassification error. • It simplifies the minority class clustering process using unsupervised clustering. • It adaptively determines the sub-cluster size being sampled using misclassification error. • Generated synthetic instances using MWMOTE improved subsequent classification. Imbalanced classification Elsevier Noise-immunity Elsevier Oversampling Elsevier Clustering Elsevier MWMOTE Elsevier Huang, Haisong oth Yao, Liguo oth Hu, Yao oth Fan, Qingsong oth Huang, Dong oth Enthalten in Elsevier Science Clements, Jody L. ELSEVIER Do denture processing techniques affect the mechanical properties of denture teeth? 2017 an international journal Amsterdam [u.a.] (DE-627)ELV000222070 volume:158 year:2020 day:15 month:11 pages:0 https://doi.org/10.1016/j.eswa.2020.113504 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.96 Zahnmedizin VZ AR 158 2020 15 1115 0 |
language |
English |
source |
Enthalten in Do denture processing techniques affect the mechanical properties of denture teeth? Amsterdam [u.a.] volume:158 year:2020 day:15 month:11 pages:0 |
sourceStr |
Enthalten in Do denture processing techniques affect the mechanical properties of denture teeth? Amsterdam [u.a.] volume:158 year:2020 day:15 month:11 pages:0 |
format_phy_str_mv |
Article |
bklname |
Zahnmedizin |
institution |
findex.gbv.de |
topic_facet |
Imbalanced classification Noise-immunity Oversampling Clustering MWMOTE |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Do denture processing techniques affect the mechanical properties of denture teeth? |
authorswithroles_txt_mv |
Wei, Jianan @@aut@@ Huang, Haisong @@oth@@ Yao, Liguo @@oth@@ Hu, Yao @@oth@@ Fan, Qingsong @@oth@@ Huang, Dong @@oth@@ |
publishDateDaySort_date |
2020-01-15T00:00:00Z |
hierarchy_top_id |
ELV000222070 |
dewey-sort |
3610 |
id |
ELV051329026 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051329026</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624173257.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2020.113504</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001130.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051329026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(20)30328-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.96</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Jianan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• New noise-immunity oversampling method for imbalanced classification problems. • It adaptively processes noise based on probability and misclassification error. • It simplifies the minority class clustering process using unsupervised clustering. • It adaptively determines the sub-cluster size being sampled using misclassification error. • Generated synthetic instances using MWMOTE improved subsequent classification.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Imbalanced classification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Noise-immunity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oversampling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MWMOTE</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Haisong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Liguo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Qingsong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Dong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Clements, Jody L. ELSEVIER</subfield><subfield code="t">Do denture processing techniques affect the mechanical properties of denture teeth?</subfield><subfield code="d">2017</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000222070</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:158</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:15</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.eswa.2020.113504</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.96</subfield><subfield code="j">Zahnmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">158</subfield><subfield code="j">2020</subfield><subfield code="b">15</subfield><subfield code="c">1115</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Wei, Jianan |
spellingShingle |
Wei, Jianan ddc 610 bkl 44.96 Elsevier Imbalanced classification Elsevier Noise-immunity Elsevier Oversampling Elsevier Clustering Elsevier MWMOTE NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems |
authorStr |
Wei, Jianan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000222070 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.96 bkl NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems Imbalanced classification Elsevier Noise-immunity Elsevier Oversampling Elsevier Clustering Elsevier MWMOTE Elsevier |
topic |
ddc 610 bkl 44.96 Elsevier Imbalanced classification Elsevier Noise-immunity Elsevier Oversampling Elsevier Clustering Elsevier MWMOTE |
topic_unstemmed |
ddc 610 bkl 44.96 Elsevier Imbalanced classification Elsevier Noise-immunity Elsevier Oversampling Elsevier Clustering Elsevier MWMOTE |
topic_browse |
ddc 610 bkl 44.96 Elsevier Imbalanced classification Elsevier Noise-immunity Elsevier Oversampling Elsevier Clustering Elsevier MWMOTE |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
h h hh l y ly y h yh q f qf d h dh |
hierarchy_parent_title |
Do denture processing techniques affect the mechanical properties of denture teeth? |
hierarchy_parent_id |
ELV000222070 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Do denture processing techniques affect the mechanical properties of denture teeth? |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000222070 |
title |
NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems |
ctrlnum |
(DE-627)ELV051329026 (ELSEVIER)S0957-4174(20)30328-6 |
title_full |
NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems |
author_sort |
Wei, Jianan |
journal |
Do denture processing techniques affect the mechanical properties of denture teeth? |
journalStr |
Do denture processing techniques affect the mechanical properties of denture teeth? |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Wei, Jianan |
container_volume |
158 |
class |
610 VZ 44.96 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wei, Jianan |
doi_str_mv |
10.1016/j.eswa.2020.113504 |
dewey-full |
610 |
title_sort |
ni-mwmote: an improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems |
title_auth |
NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems |
abstract |
• New noise-immunity oversampling method for imbalanced classification problems. • It adaptively processes noise based on probability and misclassification error. • It simplifies the minority class clustering process using unsupervised clustering. • It adaptively determines the sub-cluster size being sampled using misclassification error. • Generated synthetic instances using MWMOTE improved subsequent classification. |
abstractGer |
• New noise-immunity oversampling method for imbalanced classification problems. • It adaptively processes noise based on probability and misclassification error. • It simplifies the minority class clustering process using unsupervised clustering. • It adaptively determines the sub-cluster size being sampled using misclassification error. • Generated synthetic instances using MWMOTE improved subsequent classification. |
abstract_unstemmed |
• New noise-immunity oversampling method for imbalanced classification problems. • It adaptively processes noise based on probability and misclassification error. • It simplifies the minority class clustering process using unsupervised clustering. • It adaptively determines the sub-cluster size being sampled using misclassification error. • Generated synthetic instances using MWMOTE improved subsequent classification. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems |
url |
https://doi.org/10.1016/j.eswa.2020.113504 |
remote_bool |
true |
author2 |
Huang, Haisong Yao, Liguo Hu, Yao Fan, Qingsong Huang, Dong |
author2Str |
Huang, Haisong Yao, Liguo Hu, Yao Fan, Qingsong Huang, Dong |
ppnlink |
ELV000222070 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth |
doi_str |
10.1016/j.eswa.2020.113504 |
up_date |
2024-07-06T19:58:16.533Z |
_version_ |
1803860990002987008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051329026</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624173257.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.eswa.2020.113504</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001130.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051329026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0957-4174(20)30328-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.96</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wei, Jianan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• New noise-immunity oversampling method for imbalanced classification problems. • It adaptively processes noise based on probability and misclassification error. • It simplifies the minority class clustering process using unsupervised clustering. • It adaptively determines the sub-cluster size being sampled using misclassification error. • Generated synthetic instances using MWMOTE improved subsequent classification.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Imbalanced classification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Noise-immunity</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Oversampling</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Clustering</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MWMOTE</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Haisong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yao, Liguo</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hu, Yao</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fan, Qingsong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Dong</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Clements, Jody L. ELSEVIER</subfield><subfield code="t">Do denture processing techniques affect the mechanical properties of denture teeth?</subfield><subfield code="d">2017</subfield><subfield code="d">an international journal</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV000222070</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:158</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:15</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.eswa.2020.113504</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.96</subfield><subfield code="j">Zahnmedizin</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">158</subfield><subfield code="j">2020</subfield><subfield code="b">15</subfield><subfield code="c">1115</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4028063 |