Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy
Advances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limi...
Ausführliche Beschreibung
Autor*in: |
Benz, Dominik C. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Umfang: |
8 |
---|
Übergeordnetes Werk: |
Enthalten in: Periodicities in fair weather potential gradient data from multiple stations at different latitudes - Tacza, J. ELSEVIER, 2022, official journal of the Society of Cardiovascular Computed Tomography, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2020 ; number:5 ; pages:444-451 ; extent:8 |
Links: |
---|
DOI / URN: |
10.1016/j.jcct.2020.01.002 |
---|
Katalog-ID: |
ELV05143055X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV05143055X | ||
003 | DE-627 | ||
005 | 20230624173811.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jcct.2020.01.002 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001137.pica |
035 | |a (DE-627)ELV05143055X | ||
035 | |a (ELSEVIER)S1934-5925(19)30464-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |a 530 |q VZ |
084 | |a 38.81 |2 bkl | ||
100 | 1 | |a Benz, Dominik C. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy |
264 | 1 | |c 2020 | |
300 | |a 8 | ||
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Advances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limitations. The present study compared the impact of DLIR and adaptive statistical iterative reconstruction-Veo (ASiR-V) on quantitative and qualitative image parameters and the diagnostic accuracy of CCTA using invasive coronary angiography (ICA) as the standard of reference. | ||
650 | 7 | |a Image quality |2 Elsevier | |
650 | 7 | |a DLIR |2 Elsevier | |
650 | 7 | |a Diagnostic accuracy |2 Elsevier | |
650 | 7 | |a Adaptive statistical iterative reconstruction-veo |2 Elsevier | |
650 | 7 | |a ASiR-V |2 Elsevier | |
650 | 7 | |a Coronary CT angiography |2 Elsevier | |
650 | 7 | |a Deep-learning image reconstruction |2 Elsevier | |
700 | 1 | |a Benetos, Georgios |4 oth | |
700 | 1 | |a Rampidis, Georgios |4 oth | |
700 | 1 | |a von Felten, Elia |4 oth | |
700 | 1 | |a Bakula, Adam |4 oth | |
700 | 1 | |a Sustar, Aleksandra |4 oth | |
700 | 1 | |a Kudura, Ken |4 oth | |
700 | 1 | |a Messerli, Michael |4 oth | |
700 | 1 | |a Fuchs, Tobias A. |4 oth | |
700 | 1 | |a Gebhard, Catherine |4 oth | |
700 | 1 | |a Pazhenkottil, Aju P. |4 oth | |
700 | 1 | |a Kaufmann, Philipp A. |4 oth | |
700 | 1 | |a Buechel, Ronny R. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Tacza, J. ELSEVIER |t Periodicities in fair weather potential gradient data from multiple stations at different latitudes |d 2022 |d official journal of the Society of Cardiovascular Computed Tomography |g Amsterdam [u.a.] |w (DE-627)ELV008050279 |
773 | 1 | 8 | |g volume:14 |g year:2020 |g number:5 |g pages:444-451 |g extent:8 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.jcct.2020.01.002 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OPC-GGO | ||
936 | b | k | |a 38.81 |j Atmosphäre |q VZ |
951 | |a AR | ||
952 | |d 14 |j 2020 |e 5 |h 444-451 |g 8 |
author_variant |
d c b dc dcb |
---|---|
matchkey_str |
benzdominikcbenetosgeorgiosrampidisgeorg:2020----:aiainfeperigmgrcntutofrooayoptdoorpynigahipconie |
hierarchy_sort_str |
2020 |
bklnumber |
38.81 |
publishDate |
2020 |
allfields |
10.1016/j.jcct.2020.01.002 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001137.pica (DE-627)ELV05143055X (ELSEVIER)S1934-5925(19)30464-2 DE-627 ger DE-627 rakwb eng 550 530 VZ 38.81 bkl Benz, Dominik C. verfasserin aut Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy 2020 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Advances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limitations. The present study compared the impact of DLIR and adaptive statistical iterative reconstruction-Veo (ASiR-V) on quantitative and qualitative image parameters and the diagnostic accuracy of CCTA using invasive coronary angiography (ICA) as the standard of reference. Image quality Elsevier DLIR Elsevier Diagnostic accuracy Elsevier Adaptive statistical iterative reconstruction-veo Elsevier ASiR-V Elsevier Coronary CT angiography Elsevier Deep-learning image reconstruction Elsevier Benetos, Georgios oth Rampidis, Georgios oth von Felten, Elia oth Bakula, Adam oth Sustar, Aleksandra oth Kudura, Ken oth Messerli, Michael oth Fuchs, Tobias A. oth Gebhard, Catherine oth Pazhenkottil, Aju P. oth Kaufmann, Philipp A. oth Buechel, Ronny R. oth Enthalten in Elsevier Tacza, J. ELSEVIER Periodicities in fair weather potential gradient data from multiple stations at different latitudes 2022 official journal of the Society of Cardiovascular Computed Tomography Amsterdam [u.a.] (DE-627)ELV008050279 volume:14 year:2020 number:5 pages:444-451 extent:8 https://doi.org/10.1016/j.jcct.2020.01.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.81 Atmosphäre VZ AR 14 2020 5 444-451 8 |
spelling |
10.1016/j.jcct.2020.01.002 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001137.pica (DE-627)ELV05143055X (ELSEVIER)S1934-5925(19)30464-2 DE-627 ger DE-627 rakwb eng 550 530 VZ 38.81 bkl Benz, Dominik C. verfasserin aut Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy 2020 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Advances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limitations. The present study compared the impact of DLIR and adaptive statistical iterative reconstruction-Veo (ASiR-V) on quantitative and qualitative image parameters and the diagnostic accuracy of CCTA using invasive coronary angiography (ICA) as the standard of reference. Image quality Elsevier DLIR Elsevier Diagnostic accuracy Elsevier Adaptive statistical iterative reconstruction-veo Elsevier ASiR-V Elsevier Coronary CT angiography Elsevier Deep-learning image reconstruction Elsevier Benetos, Georgios oth Rampidis, Georgios oth von Felten, Elia oth Bakula, Adam oth Sustar, Aleksandra oth Kudura, Ken oth Messerli, Michael oth Fuchs, Tobias A. oth Gebhard, Catherine oth Pazhenkottil, Aju P. oth Kaufmann, Philipp A. oth Buechel, Ronny R. oth Enthalten in Elsevier Tacza, J. ELSEVIER Periodicities in fair weather potential gradient data from multiple stations at different latitudes 2022 official journal of the Society of Cardiovascular Computed Tomography Amsterdam [u.a.] (DE-627)ELV008050279 volume:14 year:2020 number:5 pages:444-451 extent:8 https://doi.org/10.1016/j.jcct.2020.01.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.81 Atmosphäre VZ AR 14 2020 5 444-451 8 |
allfields_unstemmed |
10.1016/j.jcct.2020.01.002 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001137.pica (DE-627)ELV05143055X (ELSEVIER)S1934-5925(19)30464-2 DE-627 ger DE-627 rakwb eng 550 530 VZ 38.81 bkl Benz, Dominik C. verfasserin aut Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy 2020 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Advances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limitations. The present study compared the impact of DLIR and adaptive statistical iterative reconstruction-Veo (ASiR-V) on quantitative and qualitative image parameters and the diagnostic accuracy of CCTA using invasive coronary angiography (ICA) as the standard of reference. Image quality Elsevier DLIR Elsevier Diagnostic accuracy Elsevier Adaptive statistical iterative reconstruction-veo Elsevier ASiR-V Elsevier Coronary CT angiography Elsevier Deep-learning image reconstruction Elsevier Benetos, Georgios oth Rampidis, Georgios oth von Felten, Elia oth Bakula, Adam oth Sustar, Aleksandra oth Kudura, Ken oth Messerli, Michael oth Fuchs, Tobias A. oth Gebhard, Catherine oth Pazhenkottil, Aju P. oth Kaufmann, Philipp A. oth Buechel, Ronny R. oth Enthalten in Elsevier Tacza, J. ELSEVIER Periodicities in fair weather potential gradient data from multiple stations at different latitudes 2022 official journal of the Society of Cardiovascular Computed Tomography Amsterdam [u.a.] (DE-627)ELV008050279 volume:14 year:2020 number:5 pages:444-451 extent:8 https://doi.org/10.1016/j.jcct.2020.01.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.81 Atmosphäre VZ AR 14 2020 5 444-451 8 |
allfieldsGer |
10.1016/j.jcct.2020.01.002 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001137.pica (DE-627)ELV05143055X (ELSEVIER)S1934-5925(19)30464-2 DE-627 ger DE-627 rakwb eng 550 530 VZ 38.81 bkl Benz, Dominik C. verfasserin aut Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy 2020 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Advances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limitations. The present study compared the impact of DLIR and adaptive statistical iterative reconstruction-Veo (ASiR-V) on quantitative and qualitative image parameters and the diagnostic accuracy of CCTA using invasive coronary angiography (ICA) as the standard of reference. Image quality Elsevier DLIR Elsevier Diagnostic accuracy Elsevier Adaptive statistical iterative reconstruction-veo Elsevier ASiR-V Elsevier Coronary CT angiography Elsevier Deep-learning image reconstruction Elsevier Benetos, Georgios oth Rampidis, Georgios oth von Felten, Elia oth Bakula, Adam oth Sustar, Aleksandra oth Kudura, Ken oth Messerli, Michael oth Fuchs, Tobias A. oth Gebhard, Catherine oth Pazhenkottil, Aju P. oth Kaufmann, Philipp A. oth Buechel, Ronny R. oth Enthalten in Elsevier Tacza, J. ELSEVIER Periodicities in fair weather potential gradient data from multiple stations at different latitudes 2022 official journal of the Society of Cardiovascular Computed Tomography Amsterdam [u.a.] (DE-627)ELV008050279 volume:14 year:2020 number:5 pages:444-451 extent:8 https://doi.org/10.1016/j.jcct.2020.01.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.81 Atmosphäre VZ AR 14 2020 5 444-451 8 |
allfieldsSound |
10.1016/j.jcct.2020.01.002 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001137.pica (DE-627)ELV05143055X (ELSEVIER)S1934-5925(19)30464-2 DE-627 ger DE-627 rakwb eng 550 530 VZ 38.81 bkl Benz, Dominik C. verfasserin aut Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy 2020 8 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Advances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limitations. The present study compared the impact of DLIR and adaptive statistical iterative reconstruction-Veo (ASiR-V) on quantitative and qualitative image parameters and the diagnostic accuracy of CCTA using invasive coronary angiography (ICA) as the standard of reference. Image quality Elsevier DLIR Elsevier Diagnostic accuracy Elsevier Adaptive statistical iterative reconstruction-veo Elsevier ASiR-V Elsevier Coronary CT angiography Elsevier Deep-learning image reconstruction Elsevier Benetos, Georgios oth Rampidis, Georgios oth von Felten, Elia oth Bakula, Adam oth Sustar, Aleksandra oth Kudura, Ken oth Messerli, Michael oth Fuchs, Tobias A. oth Gebhard, Catherine oth Pazhenkottil, Aju P. oth Kaufmann, Philipp A. oth Buechel, Ronny R. oth Enthalten in Elsevier Tacza, J. ELSEVIER Periodicities in fair weather potential gradient data from multiple stations at different latitudes 2022 official journal of the Society of Cardiovascular Computed Tomography Amsterdam [u.a.] (DE-627)ELV008050279 volume:14 year:2020 number:5 pages:444-451 extent:8 https://doi.org/10.1016/j.jcct.2020.01.002 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO 38.81 Atmosphäre VZ AR 14 2020 5 444-451 8 |
language |
English |
source |
Enthalten in Periodicities in fair weather potential gradient data from multiple stations at different latitudes Amsterdam [u.a.] volume:14 year:2020 number:5 pages:444-451 extent:8 |
sourceStr |
Enthalten in Periodicities in fair weather potential gradient data from multiple stations at different latitudes Amsterdam [u.a.] volume:14 year:2020 number:5 pages:444-451 extent:8 |
format_phy_str_mv |
Article |
bklname |
Atmosphäre |
institution |
findex.gbv.de |
topic_facet |
Image quality DLIR Diagnostic accuracy Adaptive statistical iterative reconstruction-veo ASiR-V Coronary CT angiography Deep-learning image reconstruction |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Periodicities in fair weather potential gradient data from multiple stations at different latitudes |
authorswithroles_txt_mv |
Benz, Dominik C. @@aut@@ Benetos, Georgios @@oth@@ Rampidis, Georgios @@oth@@ von Felten, Elia @@oth@@ Bakula, Adam @@oth@@ Sustar, Aleksandra @@oth@@ Kudura, Ken @@oth@@ Messerli, Michael @@oth@@ Fuchs, Tobias A. @@oth@@ Gebhard, Catherine @@oth@@ Pazhenkottil, Aju P. @@oth@@ Kaufmann, Philipp A. @@oth@@ Buechel, Ronny R. @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV008050279 |
dewey-sort |
3550 |
id |
ELV05143055X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05143055X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624173811.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcct.2020.01.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001137.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05143055X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1934-5925(19)30464-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.81</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benz, Dominik C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Advances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limitations. The present study compared the impact of DLIR and adaptive statistical iterative reconstruction-Veo (ASiR-V) on quantitative and qualitative image parameters and the diagnostic accuracy of CCTA using invasive coronary angiography (ICA) as the standard of reference.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Image quality</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DLIR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diagnostic accuracy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adaptive statistical iterative reconstruction-veo</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ASiR-V</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coronary CT angiography</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deep-learning image reconstruction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Benetos, Georgios</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rampidis, Georgios</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">von Felten, Elia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bakula, Adam</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sustar, Aleksandra</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kudura, Ken</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Messerli, Michael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fuchs, Tobias A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gebhard, Catherine</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pazhenkottil, Aju P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaufmann, Philipp A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buechel, Ronny R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Tacza, J. ELSEVIER</subfield><subfield code="t">Periodicities in fair weather potential gradient data from multiple stations at different latitudes</subfield><subfield code="d">2022</subfield><subfield code="d">official journal of the Society of Cardiovascular Computed Tomography</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008050279</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:444-451</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jcct.2020.01.002</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.81</subfield><subfield code="j">Atmosphäre</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="h">444-451</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
author |
Benz, Dominik C. |
spellingShingle |
Benz, Dominik C. ddc 550 bkl 38.81 Elsevier Image quality Elsevier DLIR Elsevier Diagnostic accuracy Elsevier Adaptive statistical iterative reconstruction-veo Elsevier ASiR-V Elsevier Coronary CT angiography Elsevier Deep-learning image reconstruction Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy |
authorStr |
Benz, Dominik C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV008050279 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
550 530 VZ 38.81 bkl Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy Image quality Elsevier DLIR Elsevier Diagnostic accuracy Elsevier Adaptive statistical iterative reconstruction-veo Elsevier ASiR-V Elsevier Coronary CT angiography Elsevier Deep-learning image reconstruction Elsevier |
topic |
ddc 550 bkl 38.81 Elsevier Image quality Elsevier DLIR Elsevier Diagnostic accuracy Elsevier Adaptive statistical iterative reconstruction-veo Elsevier ASiR-V Elsevier Coronary CT angiography Elsevier Deep-learning image reconstruction |
topic_unstemmed |
ddc 550 bkl 38.81 Elsevier Image quality Elsevier DLIR Elsevier Diagnostic accuracy Elsevier Adaptive statistical iterative reconstruction-veo Elsevier ASiR-V Elsevier Coronary CT angiography Elsevier Deep-learning image reconstruction |
topic_browse |
ddc 550 bkl 38.81 Elsevier Image quality Elsevier DLIR Elsevier Diagnostic accuracy Elsevier Adaptive statistical iterative reconstruction-veo Elsevier ASiR-V Elsevier Coronary CT angiography Elsevier Deep-learning image reconstruction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
g b gb g r gr f e v fe fev a b ab a s as k k kk m m mm t a f ta taf c g cg a p p ap app p a k pa pak r r b rr rrb |
hierarchy_parent_title |
Periodicities in fair weather potential gradient data from multiple stations at different latitudes |
hierarchy_parent_id |
ELV008050279 |
dewey-tens |
550 - Earth sciences & geology 530 - Physics |
hierarchy_top_title |
Periodicities in fair weather potential gradient data from multiple stations at different latitudes |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV008050279 |
title |
Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy |
ctrlnum |
(DE-627)ELV05143055X (ELSEVIER)S1934-5925(19)30464-2 |
title_full |
Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy |
author_sort |
Benz, Dominik C. |
journal |
Periodicities in fair weather potential gradient data from multiple stations at different latitudes |
journalStr |
Periodicities in fair weather potential gradient data from multiple stations at different latitudes |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
444 |
author_browse |
Benz, Dominik C. |
container_volume |
14 |
physical |
8 |
class |
550 530 VZ 38.81 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Benz, Dominik C. |
doi_str_mv |
10.1016/j.jcct.2020.01.002 |
dewey-full |
550 530 |
title_sort |
validation of deep-learning image reconstruction for coronary computed tomography angiography: impact on noise, image quality and diagnostic accuracy |
title_auth |
Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy |
abstract |
Advances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limitations. The present study compared the impact of DLIR and adaptive statistical iterative reconstruction-Veo (ASiR-V) on quantitative and qualitative image parameters and the diagnostic accuracy of CCTA using invasive coronary angiography (ICA) as the standard of reference. |
abstractGer |
Advances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limitations. The present study compared the impact of DLIR and adaptive statistical iterative reconstruction-Veo (ASiR-V) on quantitative and qualitative image parameters and the diagnostic accuracy of CCTA using invasive coronary angiography (ICA) as the standard of reference. |
abstract_unstemmed |
Advances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limitations. The present study compared the impact of DLIR and adaptive statistical iterative reconstruction-Veo (ASiR-V) on quantitative and qualitative image parameters and the diagnostic accuracy of CCTA using invasive coronary angiography (ICA) as the standard of reference. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OPC-GGO |
container_issue |
5 |
title_short |
Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy |
url |
https://doi.org/10.1016/j.jcct.2020.01.002 |
remote_bool |
true |
author2 |
Benetos, Georgios Rampidis, Georgios von Felten, Elia Bakula, Adam Sustar, Aleksandra Kudura, Ken Messerli, Michael Fuchs, Tobias A. Gebhard, Catherine Pazhenkottil, Aju P. Kaufmann, Philipp A. Buechel, Ronny R. |
author2Str |
Benetos, Georgios Rampidis, Georgios von Felten, Elia Bakula, Adam Sustar, Aleksandra Kudura, Ken Messerli, Michael Fuchs, Tobias A. Gebhard, Catherine Pazhenkottil, Aju P. Kaufmann, Philipp A. Buechel, Ronny R. |
ppnlink |
ELV008050279 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.jcct.2020.01.002 |
up_date |
2024-07-06T20:15:10.535Z |
_version_ |
1803862053261148160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05143055X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624173811.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jcct.2020.01.002</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001137.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05143055X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1934-5925(19)30464-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.81</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benz, Dominik C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">8</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Advances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limitations. The present study compared the impact of DLIR and adaptive statistical iterative reconstruction-Veo (ASiR-V) on quantitative and qualitative image parameters and the diagnostic accuracy of CCTA using invasive coronary angiography (ICA) as the standard of reference.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Image quality</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">DLIR</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diagnostic accuracy</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Adaptive statistical iterative reconstruction-veo</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">ASiR-V</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coronary CT angiography</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deep-learning image reconstruction</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Benetos, Georgios</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rampidis, Georgios</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">von Felten, Elia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bakula, Adam</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sustar, Aleksandra</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kudura, Ken</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Messerli, Michael</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fuchs, Tobias A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gebhard, Catherine</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pazhenkottil, Aju P.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaufmann, Philipp A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buechel, Ronny R.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Tacza, J. ELSEVIER</subfield><subfield code="t">Periodicities in fair weather potential gradient data from multiple stations at different latitudes</subfield><subfield code="d">2022</subfield><subfield code="d">official journal of the Society of Cardiovascular Computed Tomography</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV008050279</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">pages:444-451</subfield><subfield code="g">extent:8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.jcct.2020.01.002</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.81</subfield><subfield code="j">Atmosphäre</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="h">444-451</subfield><subfield code="g">8</subfield></datafield></record></collection>
|
score |
7.4028063 |