Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy

Advances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limi...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Benz, Dominik C. [verfasserIn]

Benetos, Georgios

Rampidis, Georgios

von Felten, Elia

Bakula, Adam

Sustar, Aleksandra

Kudura, Ken

Messerli, Michael

Fuchs, Tobias A.

Gebhard, Catherine

Pazhenkottil, Aju P.

Kaufmann, Philipp A.

Buechel, Ronny R.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2020

Schlagwörter:

Image quality

DLIR

Diagnostic accuracy

Adaptive statistical iterative reconstruction-veo

ASiR-V

Coronary CT angiography

Deep-learning image reconstruction

Umfang:

8

Übergeordnetes Werk:

Enthalten in: Periodicities in fair weather potential gradient data from multiple stations at different latitudes - Tacza, J. ELSEVIER, 2022, official journal of the Society of Cardiovascular Computed Tomography, Amsterdam [u.a.]

Übergeordnetes Werk:

volume:14 ; year:2020 ; number:5 ; pages:444-451 ; extent:8

Links:

Volltext

DOI / URN:

10.1016/j.jcct.2020.01.002

Katalog-ID:

ELV05143055X

Nicht das Richtige dabei?

Schreiben Sie uns!