Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks
• An experimental database containing influential parameters and heat transfer capacity was compiled using literature-based data collection and on-site measurement. • Linear and nonlinear regression models were adopted to evaluate the heat transfer performance of GSHP. • BP neural networks were empl...
Ausführliche Beschreibung
Autor*in: |
Xu, Xinjie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics - Radünz, William Corrêa ELSEVIER, 2020, design, processes, equipment, economics, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:180 ; year:2020 ; day:5 ; month:11 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.applthermaleng.2020.115914 |
---|
Katalog-ID: |
ELV051461757 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV051461757 | ||
003 | DE-627 | ||
005 | 20230624174021.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.applthermaleng.2020.115914 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica |
035 | |a (DE-627)ELV051461757 | ||
035 | |a (ELSEVIER)S1359-4311(20)33396-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Xu, Xinjie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • An experimental database containing influential parameters and heat transfer capacity was compiled using literature-based data collection and on-site measurement. • Linear and nonlinear regression models were adopted to evaluate the heat transfer performance of GSHP. • BP neural networks were employed to develop a prediction model for evaluation of heat transfer capacity of GSHP. • A parametric analysis using the trained ANN model was conducted to predict the trend of heat transfer capacity as a function of each parameter. | ||
650 | 7 | |a Linear regression, nonlinear regression |2 Elsevier | |
650 | 7 | |a Ground source heat pump |2 Elsevier | |
650 | 7 | |a Artificial neural networks |2 Elsevier | |
650 | 7 | |a Heat transfer performance |2 Elsevier | |
650 | 7 | |a Parameter analysis |2 Elsevier | |
700 | 1 | |a Liu, Jinxiang |4 oth | |
700 | 1 | |a Wang, Yu |4 oth | |
700 | 1 | |a Xu, Jinjun |4 oth | |
700 | 1 | |a Bao, Jun |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Radünz, William Corrêa ELSEVIER |t Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |d 2020 |d design, processes, equipment, economics |g Amsterdam [u.a.] |w (DE-627)ELV003905551 |
773 | 1 | 8 | |g volume:180 |g year:2020 |g day:5 |g month:11 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.applthermaleng.2020.115914 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |q VZ |
951 | |a AR | ||
952 | |d 180 |j 2020 |b 5 |c 1105 |h 0 |
author_variant |
x x xx |
---|---|
matchkey_str |
xuxinjieliujinxiangwangyuxujinjunbaojun:2020----:efraceautoogonsuchapmuigiernnnierersina |
hierarchy_sort_str |
2020 |
bklnumber |
52.56 |
publishDate |
2020 |
allfields |
10.1016/j.applthermaleng.2020.115914 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica (DE-627)ELV051461757 (ELSEVIER)S1359-4311(20)33396-2 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Xu, Xinjie verfasserin aut Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • An experimental database containing influential parameters and heat transfer capacity was compiled using literature-based data collection and on-site measurement. • Linear and nonlinear regression models were adopted to evaluate the heat transfer performance of GSHP. • BP neural networks were employed to develop a prediction model for evaluation of heat transfer capacity of GSHP. • A parametric analysis using the trained ANN model was conducted to predict the trend of heat transfer capacity as a function of each parameter. Linear regression, nonlinear regression Elsevier Ground source heat pump Elsevier Artificial neural networks Elsevier Heat transfer performance Elsevier Parameter analysis Elsevier Liu, Jinxiang oth Wang, Yu oth Xu, Jinjun oth Bao, Jun oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:180 year:2020 day:5 month:11 pages:0 https://doi.org/10.1016/j.applthermaleng.2020.115914 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 180 2020 5 1105 0 |
spelling |
10.1016/j.applthermaleng.2020.115914 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica (DE-627)ELV051461757 (ELSEVIER)S1359-4311(20)33396-2 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Xu, Xinjie verfasserin aut Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • An experimental database containing influential parameters and heat transfer capacity was compiled using literature-based data collection and on-site measurement. • Linear and nonlinear regression models were adopted to evaluate the heat transfer performance of GSHP. • BP neural networks were employed to develop a prediction model for evaluation of heat transfer capacity of GSHP. • A parametric analysis using the trained ANN model was conducted to predict the trend of heat transfer capacity as a function of each parameter. Linear regression, nonlinear regression Elsevier Ground source heat pump Elsevier Artificial neural networks Elsevier Heat transfer performance Elsevier Parameter analysis Elsevier Liu, Jinxiang oth Wang, Yu oth Xu, Jinjun oth Bao, Jun oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:180 year:2020 day:5 month:11 pages:0 https://doi.org/10.1016/j.applthermaleng.2020.115914 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 180 2020 5 1105 0 |
allfields_unstemmed |
10.1016/j.applthermaleng.2020.115914 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica (DE-627)ELV051461757 (ELSEVIER)S1359-4311(20)33396-2 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Xu, Xinjie verfasserin aut Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • An experimental database containing influential parameters and heat transfer capacity was compiled using literature-based data collection and on-site measurement. • Linear and nonlinear regression models were adopted to evaluate the heat transfer performance of GSHP. • BP neural networks were employed to develop a prediction model for evaluation of heat transfer capacity of GSHP. • A parametric analysis using the trained ANN model was conducted to predict the trend of heat transfer capacity as a function of each parameter. Linear regression, nonlinear regression Elsevier Ground source heat pump Elsevier Artificial neural networks Elsevier Heat transfer performance Elsevier Parameter analysis Elsevier Liu, Jinxiang oth Wang, Yu oth Xu, Jinjun oth Bao, Jun oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:180 year:2020 day:5 month:11 pages:0 https://doi.org/10.1016/j.applthermaleng.2020.115914 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 180 2020 5 1105 0 |
allfieldsGer |
10.1016/j.applthermaleng.2020.115914 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica (DE-627)ELV051461757 (ELSEVIER)S1359-4311(20)33396-2 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Xu, Xinjie verfasserin aut Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • An experimental database containing influential parameters and heat transfer capacity was compiled using literature-based data collection and on-site measurement. • Linear and nonlinear regression models were adopted to evaluate the heat transfer performance of GSHP. • BP neural networks were employed to develop a prediction model for evaluation of heat transfer capacity of GSHP. • A parametric analysis using the trained ANN model was conducted to predict the trend of heat transfer capacity as a function of each parameter. Linear regression, nonlinear regression Elsevier Ground source heat pump Elsevier Artificial neural networks Elsevier Heat transfer performance Elsevier Parameter analysis Elsevier Liu, Jinxiang oth Wang, Yu oth Xu, Jinjun oth Bao, Jun oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:180 year:2020 day:5 month:11 pages:0 https://doi.org/10.1016/j.applthermaleng.2020.115914 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 180 2020 5 1105 0 |
allfieldsSound |
10.1016/j.applthermaleng.2020.115914 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica (DE-627)ELV051461757 (ELSEVIER)S1359-4311(20)33396-2 DE-627 ger DE-627 rakwb eng 530 620 VZ 52.56 bkl Xu, Xinjie verfasserin aut Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • An experimental database containing influential parameters and heat transfer capacity was compiled using literature-based data collection and on-site measurement. • Linear and nonlinear regression models were adopted to evaluate the heat transfer performance of GSHP. • BP neural networks were employed to develop a prediction model for evaluation of heat transfer capacity of GSHP. • A parametric analysis using the trained ANN model was conducted to predict the trend of heat transfer capacity as a function of each parameter. Linear regression, nonlinear regression Elsevier Ground source heat pump Elsevier Artificial neural networks Elsevier Heat transfer performance Elsevier Parameter analysis Elsevier Liu, Jinxiang oth Wang, Yu oth Xu, Jinjun oth Bao, Jun oth Enthalten in Elsevier Science Radünz, William Corrêa ELSEVIER Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics 2020 design, processes, equipment, economics Amsterdam [u.a.] (DE-627)ELV003905551 volume:180 year:2020 day:5 month:11 pages:0 https://doi.org/10.1016/j.applthermaleng.2020.115914 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U 52.56 Regenerative Energieformen alternative Energieformen VZ AR 180 2020 5 1105 0 |
language |
English |
source |
Enthalten in Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics Amsterdam [u.a.] volume:180 year:2020 day:5 month:11 pages:0 |
sourceStr |
Enthalten in Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics Amsterdam [u.a.] volume:180 year:2020 day:5 month:11 pages:0 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Linear regression, nonlinear regression Ground source heat pump Artificial neural networks Heat transfer performance Parameter analysis |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
authorswithroles_txt_mv |
Xu, Xinjie @@aut@@ Liu, Jinxiang @@oth@@ Wang, Yu @@oth@@ Xu, Jinjun @@oth@@ Bao, Jun @@oth@@ |
publishDateDaySort_date |
2020-01-05T00:00:00Z |
hierarchy_top_id |
ELV003905551 |
dewey-sort |
3530 |
id |
ELV051461757 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051461757</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624174021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2020.115914</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051461757</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(20)33396-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Xinjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• An experimental database containing influential parameters and heat transfer capacity was compiled using literature-based data collection and on-site measurement. • Linear and nonlinear regression models were adopted to evaluate the heat transfer performance of GSHP. • BP neural networks were employed to develop a prediction model for evaluation of heat transfer capacity of GSHP. • A parametric analysis using the trained ANN model was conducted to predict the trend of heat transfer capacity as a function of each parameter.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear regression, nonlinear regression</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ground source heat pump</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial neural networks</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat transfer performance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Parameter analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jinxiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Jinjun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bao, Jun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Radünz, William Corrêa ELSEVIER</subfield><subfield code="t">Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics</subfield><subfield code="d">2020</subfield><subfield code="d">design, processes, equipment, economics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003905551</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:180</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:5</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.applthermaleng.2020.115914</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">180</subfield><subfield code="j">2020</subfield><subfield code="b">5</subfield><subfield code="c">1105</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Xu, Xinjie |
spellingShingle |
Xu, Xinjie ddc 530 bkl 52.56 Elsevier Linear regression, nonlinear regression Elsevier Ground source heat pump Elsevier Artificial neural networks Elsevier Heat transfer performance Elsevier Parameter analysis Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks |
authorStr |
Xu, Xinjie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV003905551 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 620 VZ 52.56 bkl Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks Linear regression, nonlinear regression Elsevier Ground source heat pump Elsevier Artificial neural networks Elsevier Heat transfer performance Elsevier Parameter analysis Elsevier |
topic |
ddc 530 bkl 52.56 Elsevier Linear regression, nonlinear regression Elsevier Ground source heat pump Elsevier Artificial neural networks Elsevier Heat transfer performance Elsevier Parameter analysis |
topic_unstemmed |
ddc 530 bkl 52.56 Elsevier Linear regression, nonlinear regression Elsevier Ground source heat pump Elsevier Artificial neural networks Elsevier Heat transfer performance Elsevier Parameter analysis |
topic_browse |
ddc 530 bkl 52.56 Elsevier Linear regression, nonlinear regression Elsevier Ground source heat pump Elsevier Artificial neural networks Elsevier Heat transfer performance Elsevier Parameter analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j l jl y w yw j x jx j b jb |
hierarchy_parent_title |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
hierarchy_parent_id |
ELV003905551 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV003905551 |
title |
Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks |
ctrlnum |
(DE-627)ELV051461757 (ELSEVIER)S1359-4311(20)33396-2 |
title_full |
Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks |
author_sort |
Xu, Xinjie |
journal |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
journalStr |
Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Xu, Xinjie |
container_volume |
180 |
class |
530 620 VZ 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xu, Xinjie |
doi_str_mv |
10.1016/j.applthermaleng.2020.115914 |
dewey-full |
530 620 |
title_sort |
performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks |
title_auth |
Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks |
abstract |
• An experimental database containing influential parameters and heat transfer capacity was compiled using literature-based data collection and on-site measurement. • Linear and nonlinear regression models were adopted to evaluate the heat transfer performance of GSHP. • BP neural networks were employed to develop a prediction model for evaluation of heat transfer capacity of GSHP. • A parametric analysis using the trained ANN model was conducted to predict the trend of heat transfer capacity as a function of each parameter. |
abstractGer |
• An experimental database containing influential parameters and heat transfer capacity was compiled using literature-based data collection and on-site measurement. • Linear and nonlinear regression models were adopted to evaluate the heat transfer performance of GSHP. • BP neural networks were employed to develop a prediction model for evaluation of heat transfer capacity of GSHP. • A parametric analysis using the trained ANN model was conducted to predict the trend of heat transfer capacity as a function of each parameter. |
abstract_unstemmed |
• An experimental database containing influential parameters and heat transfer capacity was compiled using literature-based data collection and on-site measurement. • Linear and nonlinear regression models were adopted to evaluate the heat transfer performance of GSHP. • BP neural networks were employed to develop a prediction model for evaluation of heat transfer capacity of GSHP. • A parametric analysis using the trained ANN model was conducted to predict the trend of heat transfer capacity as a function of each parameter. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks |
url |
https://doi.org/10.1016/j.applthermaleng.2020.115914 |
remote_bool |
true |
author2 |
Liu, Jinxiang Wang, Yu Xu, Jinjun Bao, Jun |
author2Str |
Liu, Jinxiang Wang, Yu Xu, Jinjun Bao, Jun |
ppnlink |
ELV003905551 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth |
doi_str |
10.1016/j.applthermaleng.2020.115914 |
up_date |
2024-07-06T20:20:04.377Z |
_version_ |
1803862361377865728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051461757</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624174021.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2020.115914</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051461757</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(20)33396-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Xinjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Performance evaluation of ground source heat pump using linear and nonlinear regressions and artificial neural networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• An experimental database containing influential parameters and heat transfer capacity was compiled using literature-based data collection and on-site measurement. • Linear and nonlinear regression models were adopted to evaluate the heat transfer performance of GSHP. • BP neural networks were employed to develop a prediction model for evaluation of heat transfer capacity of GSHP. • A parametric analysis using the trained ANN model was conducted to predict the trend of heat transfer capacity as a function of each parameter.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Linear regression, nonlinear regression</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ground source heat pump</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Artificial neural networks</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Heat transfer performance</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Parameter analysis</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Jinxiang</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yu</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Jinjun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bao, Jun</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Radünz, William Corrêa ELSEVIER</subfield><subfield code="t">Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics</subfield><subfield code="d">2020</subfield><subfield code="d">design, processes, equipment, economics</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV003905551</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:180</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:5</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.applthermaleng.2020.115914</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">180</subfield><subfield code="j">2020</subfield><subfield code="b">5</subfield><subfield code="c">1105</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401272 |