Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations
• Dynamic pricing formulated as a partially observable Markov decision process. • Deep reinforcement learning (Deep-RL) algorithms used as solution methods. • Deep-RL algorithms outperform feedback control heuristic on different objectives. • Policies trained using Deep-RL algorithms transfer well t...
Ausführliche Beschreibung
Autor*in: |
Pandey, Venktesh [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide - Rohit, Jigneshkumar V. ELSEVIER, 2016, an international journal : a journal affiliated with IFAC, the International Federation of Automatic Control, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:119 ; year:2020 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.trc.2020.102715 |
---|
Katalog-ID: |
ELV051489449 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV051489449 | ||
003 | DE-627 | ||
005 | 20230624174210.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.trc.2020.102715 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001142.pica |
035 | |a (DE-627)ELV051489449 | ||
035 | |a (ELSEVIER)S0968-090X(20)30630-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
084 | |a 50.22 |2 bkl | ||
084 | |a 35.07 |2 bkl | ||
100 | 1 | |a Pandey, Venktesh |e verfasserin |4 aut | |
245 | 1 | 0 | |a Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations |
264 | 1 | |c 2020 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • Dynamic pricing formulated as a partially observable Markov decision process. • Deep reinforcement learning (Deep-RL) algorithms used as solution methods. • Deep-RL algorithms outperform feedback control heuristic on different objectives. • Policies trained using Deep-RL algorithms transfer well to new input distributions. • Deep-RL algorithms suitable for multi-objective optimization using reward shaping. | ||
650 | 7 | |a Express lanes |2 Elsevier | |
650 | 7 | |a Feedback control heuristic |2 Elsevier | |
650 | 7 | |a Dynamic pricing |2 Elsevier | |
650 | 7 | |a Traffic control |2 Elsevier | |
650 | 7 | |a Deep reinforcement learning |2 Elsevier | |
650 | 7 | |a Managed lanes |2 Elsevier | |
650 | 7 | |a High occupancy/toll (HOT) lanes |2 Elsevier | |
700 | 1 | |a Wang, Evana |4 oth | |
700 | 1 | |a Boyles, Stephen D. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Rohit, Jigneshkumar V. ELSEVIER |t Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide |d 2016 |d an international journal : a journal affiliated with IFAC, the International Federation of Automatic Control |g Amsterdam [u.a.] |w (DE-627)ELV001932888 |
773 | 1 | 8 | |g volume:119 |g year:2020 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.trc.2020.102715 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 50.22 |j Sensorik |q VZ |
936 | b | k | |a 35.07 |j Chemisches Labor |j chemische Methoden |q VZ |
951 | |a AR | ||
952 | |d 119 |j 2020 |h 0 |
author_variant |
v p vp |
---|---|
matchkey_str |
pandeyvenkteshwangevanaboylesstephend:2020----:epenocmnlannagrtmodnmcrcnoepesaewt |
hierarchy_sort_str |
2020 |
bklnumber |
50.22 35.07 |
publishDate |
2020 |
allfields |
10.1016/j.trc.2020.102715 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001142.pica (DE-627)ELV051489449 (ELSEVIER)S0968-090X(20)30630-6 DE-627 ger DE-627 rakwb eng 530 620 VZ 50.22 bkl 35.07 bkl Pandey, Venktesh verfasserin aut Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Dynamic pricing formulated as a partially observable Markov decision process. • Deep reinforcement learning (Deep-RL) algorithms used as solution methods. • Deep-RL algorithms outperform feedback control heuristic on different objectives. • Policies trained using Deep-RL algorithms transfer well to new input distributions. • Deep-RL algorithms suitable for multi-objective optimization using reward shaping. Express lanes Elsevier Feedback control heuristic Elsevier Dynamic pricing Elsevier Traffic control Elsevier Deep reinforcement learning Elsevier Managed lanes Elsevier High occupancy/toll (HOT) lanes Elsevier Wang, Evana oth Boyles, Stephen D. oth Enthalten in Elsevier Science Rohit, Jigneshkumar V. ELSEVIER Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide 2016 an international journal : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV001932888 volume:119 year:2020 pages:0 https://doi.org/10.1016/j.trc.2020.102715 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 119 2020 0 |
spelling |
10.1016/j.trc.2020.102715 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001142.pica (DE-627)ELV051489449 (ELSEVIER)S0968-090X(20)30630-6 DE-627 ger DE-627 rakwb eng 530 620 VZ 50.22 bkl 35.07 bkl Pandey, Venktesh verfasserin aut Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Dynamic pricing formulated as a partially observable Markov decision process. • Deep reinforcement learning (Deep-RL) algorithms used as solution methods. • Deep-RL algorithms outperform feedback control heuristic on different objectives. • Policies trained using Deep-RL algorithms transfer well to new input distributions. • Deep-RL algorithms suitable for multi-objective optimization using reward shaping. Express lanes Elsevier Feedback control heuristic Elsevier Dynamic pricing Elsevier Traffic control Elsevier Deep reinforcement learning Elsevier Managed lanes Elsevier High occupancy/toll (HOT) lanes Elsevier Wang, Evana oth Boyles, Stephen D. oth Enthalten in Elsevier Science Rohit, Jigneshkumar V. ELSEVIER Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide 2016 an international journal : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV001932888 volume:119 year:2020 pages:0 https://doi.org/10.1016/j.trc.2020.102715 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 119 2020 0 |
allfields_unstemmed |
10.1016/j.trc.2020.102715 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001142.pica (DE-627)ELV051489449 (ELSEVIER)S0968-090X(20)30630-6 DE-627 ger DE-627 rakwb eng 530 620 VZ 50.22 bkl 35.07 bkl Pandey, Venktesh verfasserin aut Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Dynamic pricing formulated as a partially observable Markov decision process. • Deep reinforcement learning (Deep-RL) algorithms used as solution methods. • Deep-RL algorithms outperform feedback control heuristic on different objectives. • Policies trained using Deep-RL algorithms transfer well to new input distributions. • Deep-RL algorithms suitable for multi-objective optimization using reward shaping. Express lanes Elsevier Feedback control heuristic Elsevier Dynamic pricing Elsevier Traffic control Elsevier Deep reinforcement learning Elsevier Managed lanes Elsevier High occupancy/toll (HOT) lanes Elsevier Wang, Evana oth Boyles, Stephen D. oth Enthalten in Elsevier Science Rohit, Jigneshkumar V. ELSEVIER Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide 2016 an international journal : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV001932888 volume:119 year:2020 pages:0 https://doi.org/10.1016/j.trc.2020.102715 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 119 2020 0 |
allfieldsGer |
10.1016/j.trc.2020.102715 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001142.pica (DE-627)ELV051489449 (ELSEVIER)S0968-090X(20)30630-6 DE-627 ger DE-627 rakwb eng 530 620 VZ 50.22 bkl 35.07 bkl Pandey, Venktesh verfasserin aut Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Dynamic pricing formulated as a partially observable Markov decision process. • Deep reinforcement learning (Deep-RL) algorithms used as solution methods. • Deep-RL algorithms outperform feedback control heuristic on different objectives. • Policies trained using Deep-RL algorithms transfer well to new input distributions. • Deep-RL algorithms suitable for multi-objective optimization using reward shaping. Express lanes Elsevier Feedback control heuristic Elsevier Dynamic pricing Elsevier Traffic control Elsevier Deep reinforcement learning Elsevier Managed lanes Elsevier High occupancy/toll (HOT) lanes Elsevier Wang, Evana oth Boyles, Stephen D. oth Enthalten in Elsevier Science Rohit, Jigneshkumar V. ELSEVIER Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide 2016 an international journal : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV001932888 volume:119 year:2020 pages:0 https://doi.org/10.1016/j.trc.2020.102715 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 119 2020 0 |
allfieldsSound |
10.1016/j.trc.2020.102715 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001142.pica (DE-627)ELV051489449 (ELSEVIER)S0968-090X(20)30630-6 DE-627 ger DE-627 rakwb eng 530 620 VZ 50.22 bkl 35.07 bkl Pandey, Venktesh verfasserin aut Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations 2020 nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Dynamic pricing formulated as a partially observable Markov decision process. • Deep reinforcement learning (Deep-RL) algorithms used as solution methods. • Deep-RL algorithms outperform feedback control heuristic on different objectives. • Policies trained using Deep-RL algorithms transfer well to new input distributions. • Deep-RL algorithms suitable for multi-objective optimization using reward shaping. Express lanes Elsevier Feedback control heuristic Elsevier Dynamic pricing Elsevier Traffic control Elsevier Deep reinforcement learning Elsevier Managed lanes Elsevier High occupancy/toll (HOT) lanes Elsevier Wang, Evana oth Boyles, Stephen D. oth Enthalten in Elsevier Science Rohit, Jigneshkumar V. ELSEVIER Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide 2016 an international journal : a journal affiliated with IFAC, the International Federation of Automatic Control Amsterdam [u.a.] (DE-627)ELV001932888 volume:119 year:2020 pages:0 https://doi.org/10.1016/j.trc.2020.102715 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 50.22 Sensorik VZ 35.07 Chemisches Labor chemische Methoden VZ AR 119 2020 0 |
language |
English |
source |
Enthalten in Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide Amsterdam [u.a.] volume:119 year:2020 pages:0 |
sourceStr |
Enthalten in Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide Amsterdam [u.a.] volume:119 year:2020 pages:0 |
format_phy_str_mv |
Article |
bklname |
Sensorik Chemisches Labor chemische Methoden |
institution |
findex.gbv.de |
topic_facet |
Express lanes Feedback control heuristic Dynamic pricing Traffic control Deep reinforcement learning Managed lanes High occupancy/toll (HOT) lanes |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide |
authorswithroles_txt_mv |
Pandey, Venktesh @@aut@@ Wang, Evana @@oth@@ Boyles, Stephen D. @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV001932888 |
dewey-sort |
3530 |
id |
ELV051489449 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051489449</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624174210.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.trc.2020.102715</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001142.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051489449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0968-090X(20)30630-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pandey, Venktesh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Dynamic pricing formulated as a partially observable Markov decision process. • Deep reinforcement learning (Deep-RL) algorithms used as solution methods. • Deep-RL algorithms outperform feedback control heuristic on different objectives. • Policies trained using Deep-RL algorithms transfer well to new input distributions. • Deep-RL algorithms suitable for multi-objective optimization using reward shaping.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Express lanes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feedback control heuristic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamic pricing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Traffic control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deep reinforcement learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Managed lanes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High occupancy/toll (HOT) lanes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Evana</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boyles, Stephen D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rohit, Jigneshkumar V. ELSEVIER</subfield><subfield code="t">Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide</subfield><subfield code="d">2016</subfield><subfield code="d">an international journal : a journal affiliated with IFAC, the International Federation of Automatic Control</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001932888</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:119</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.trc.2020.102715</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.07</subfield><subfield code="j">Chemisches Labor</subfield><subfield code="j">chemische Methoden</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">119</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Pandey, Venktesh |
spellingShingle |
Pandey, Venktesh ddc 530 bkl 50.22 bkl 35.07 Elsevier Express lanes Elsevier Feedback control heuristic Elsevier Dynamic pricing Elsevier Traffic control Elsevier Deep reinforcement learning Elsevier Managed lanes Elsevier High occupancy/toll (HOT) lanes Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations |
authorStr |
Pandey, Venktesh |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV001932888 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 620 VZ 50.22 bkl 35.07 bkl Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations Express lanes Elsevier Feedback control heuristic Elsevier Dynamic pricing Elsevier Traffic control Elsevier Deep reinforcement learning Elsevier Managed lanes Elsevier High occupancy/toll (HOT) lanes Elsevier |
topic |
ddc 530 bkl 50.22 bkl 35.07 Elsevier Express lanes Elsevier Feedback control heuristic Elsevier Dynamic pricing Elsevier Traffic control Elsevier Deep reinforcement learning Elsevier Managed lanes Elsevier High occupancy/toll (HOT) lanes |
topic_unstemmed |
ddc 530 bkl 50.22 bkl 35.07 Elsevier Express lanes Elsevier Feedback control heuristic Elsevier Dynamic pricing Elsevier Traffic control Elsevier Deep reinforcement learning Elsevier Managed lanes Elsevier High occupancy/toll (HOT) lanes |
topic_browse |
ddc 530 bkl 50.22 bkl 35.07 Elsevier Express lanes Elsevier Feedback control heuristic Elsevier Dynamic pricing Elsevier Traffic control Elsevier Deep reinforcement learning Elsevier Managed lanes Elsevier High occupancy/toll (HOT) lanes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
e w ew s d b sd sdb |
hierarchy_parent_title |
Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide |
hierarchy_parent_id |
ELV001932888 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV001932888 |
title |
Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations |
ctrlnum |
(DE-627)ELV051489449 (ELSEVIER)S0968-090X(20)30630-6 |
title_full |
Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations |
author_sort |
Pandey, Venktesh |
journal |
Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide |
journalStr |
Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Pandey, Venktesh |
container_volume |
119 |
class |
530 620 VZ 50.22 bkl 35.07 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Pandey, Venktesh |
doi_str_mv |
10.1016/j.trc.2020.102715 |
dewey-full |
530 620 |
title_sort |
deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations |
title_auth |
Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations |
abstract |
• Dynamic pricing formulated as a partially observable Markov decision process. • Deep reinforcement learning (Deep-RL) algorithms used as solution methods. • Deep-RL algorithms outperform feedback control heuristic on different objectives. • Policies trained using Deep-RL algorithms transfer well to new input distributions. • Deep-RL algorithms suitable for multi-objective optimization using reward shaping. |
abstractGer |
• Dynamic pricing formulated as a partially observable Markov decision process. • Deep reinforcement learning (Deep-RL) algorithms used as solution methods. • Deep-RL algorithms outperform feedback control heuristic on different objectives. • Policies trained using Deep-RL algorithms transfer well to new input distributions. • Deep-RL algorithms suitable for multi-objective optimization using reward shaping. |
abstract_unstemmed |
• Dynamic pricing formulated as a partially observable Markov decision process. • Deep reinforcement learning (Deep-RL) algorithms used as solution methods. • Deep-RL algorithms outperform feedback control heuristic on different objectives. • Policies trained using Deep-RL algorithms transfer well to new input distributions. • Deep-RL algorithms suitable for multi-objective optimization using reward shaping. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations |
url |
https://doi.org/10.1016/j.trc.2020.102715 |
remote_bool |
true |
author2 |
Wang, Evana Boyles, Stephen D. |
author2Str |
Wang, Evana Boyles, Stephen D. |
ppnlink |
ELV001932888 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.trc.2020.102715 |
up_date |
2024-07-06T20:24:20.559Z |
_version_ |
1803862630003113984 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051489449</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230624174210.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.trc.2020.102715</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001142.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051489449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0968-090X(20)30630-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.22</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.07</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pandey, Venktesh</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deep reinforcement learning algorithm for dynamic pricing of express lanes with multiple access locations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Dynamic pricing formulated as a partially observable Markov decision process. • Deep reinforcement learning (Deep-RL) algorithms used as solution methods. • Deep-RL algorithms outperform feedback control heuristic on different objectives. • Policies trained using Deep-RL algorithms transfer well to new input distributions. • Deep-RL algorithms suitable for multi-objective optimization using reward shaping.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Express lanes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feedback control heuristic</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamic pricing</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Traffic control</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Deep reinforcement learning</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Managed lanes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High occupancy/toll (HOT) lanes</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Evana</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boyles, Stephen D.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Rohit, Jigneshkumar V. ELSEVIER</subfield><subfield code="t">Dithiocarbamate-calix[4]arene functionalized gold nanoparticles as a selective and sensitive colorimetric probe for assay of metsulfuron-methyl herbicide</subfield><subfield code="d">2016</subfield><subfield code="d">an international journal : a journal affiliated with IFAC, the International Federation of Automatic Control</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV001932888</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:119</subfield><subfield code="g">year:2020</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.trc.2020.102715</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.22</subfield><subfield code="j">Sensorik</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.07</subfield><subfield code="j">Chemisches Labor</subfield><subfield code="j">chemische Methoden</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">119</subfield><subfield code="j">2020</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4021244 |