Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells
Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorgani...
Ausführliche Beschreibung
Autor*in: |
Remya, R. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving - Lu, Li ELSEVIER, 2020, including materials science communications : an international, interdisciplinary journal on science characterization and processing of advanced materials : the international journal of the Chinese Society for Materials Science, New York, NY [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:255 ; year:2020 ; day:15 ; month:11 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.matchemphys.2020.123584 |
---|
Katalog-ID: |
ELV05150328X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV05150328X | ||
003 | DE-627 | ||
005 | 20230626032110.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.matchemphys.2020.123584 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001155.pica |
035 | |a (DE-627)ELV05150328X | ||
035 | |a (ELSEVIER)S0254-0584(20)30948-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.38 |2 bkl | ||
084 | |a 44.91 |2 bkl | ||
100 | 1 | |a Remya, R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. | ||
520 | |a Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. | ||
650 | 7 | |a Hole transporting layer (HTL) |2 Elsevier | |
650 | 7 | |a Polymer solar cell |2 Elsevier | |
650 | 7 | |a Hydrated tungsten trioxide |2 Elsevier | |
700 | 1 | |a Gayathri, P.T.G. |4 oth | |
700 | 1 | |a Deb, Biswapriya |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier |a Lu, Li ELSEVIER |t Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving |d 2020 |d including materials science communications : an international, interdisciplinary journal on science characterization and processing of advanced materials : the international journal of the Chinese Society for Materials Science |g New York, NY [u.a.] |w (DE-627)ELV005250781 |
773 | 1 | 8 | |g volume:255 |g year:2020 |g day:15 |g month:11 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.matchemphys.2020.123584 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.38 |j Pharmakologie |q VZ |
936 | b | k | |a 44.91 |j Psychiatrie |j Psychopathologie |q VZ |
951 | |a AR | ||
952 | |d 255 |j 2020 |b 15 |c 1115 |h 0 |
author_variant |
r r rr |
---|---|
matchkey_str |
remyargayathriptgdebbiswapriya:2020----:tdeosltopoesdugtnxdnnsrcuefrfiinhltasotn |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
44.38 44.91 |
publishDate |
2020 |
allfields |
10.1016/j.matchemphys.2020.123584 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001155.pica (DE-627)ELV05150328X (ELSEVIER)S0254-0584(20)30948-2 DE-627 ger DE-627 rakwb eng 610 VZ 44.38 bkl 44.91 bkl Remya, R. verfasserin aut Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. Hole transporting layer (HTL) Elsevier Polymer solar cell Elsevier Hydrated tungsten trioxide Elsevier Gayathri, P.T.G. oth Deb, Biswapriya oth Enthalten in Elsevier Lu, Li ELSEVIER Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving 2020 including materials science communications : an international, interdisciplinary journal on science characterization and processing of advanced materials : the international journal of the Chinese Society for Materials Science New York, NY [u.a.] (DE-627)ELV005250781 volume:255 year:2020 day:15 month:11 pages:0 https://doi.org/10.1016/j.matchemphys.2020.123584 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.38 Pharmakologie VZ 44.91 Psychiatrie Psychopathologie VZ AR 255 2020 15 1115 0 |
spelling |
10.1016/j.matchemphys.2020.123584 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001155.pica (DE-627)ELV05150328X (ELSEVIER)S0254-0584(20)30948-2 DE-627 ger DE-627 rakwb eng 610 VZ 44.38 bkl 44.91 bkl Remya, R. verfasserin aut Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. Hole transporting layer (HTL) Elsevier Polymer solar cell Elsevier Hydrated tungsten trioxide Elsevier Gayathri, P.T.G. oth Deb, Biswapriya oth Enthalten in Elsevier Lu, Li ELSEVIER Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving 2020 including materials science communications : an international, interdisciplinary journal on science characterization and processing of advanced materials : the international journal of the Chinese Society for Materials Science New York, NY [u.a.] (DE-627)ELV005250781 volume:255 year:2020 day:15 month:11 pages:0 https://doi.org/10.1016/j.matchemphys.2020.123584 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.38 Pharmakologie VZ 44.91 Psychiatrie Psychopathologie VZ AR 255 2020 15 1115 0 |
allfields_unstemmed |
10.1016/j.matchemphys.2020.123584 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001155.pica (DE-627)ELV05150328X (ELSEVIER)S0254-0584(20)30948-2 DE-627 ger DE-627 rakwb eng 610 VZ 44.38 bkl 44.91 bkl Remya, R. verfasserin aut Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. Hole transporting layer (HTL) Elsevier Polymer solar cell Elsevier Hydrated tungsten trioxide Elsevier Gayathri, P.T.G. oth Deb, Biswapriya oth Enthalten in Elsevier Lu, Li ELSEVIER Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving 2020 including materials science communications : an international, interdisciplinary journal on science characterization and processing of advanced materials : the international journal of the Chinese Society for Materials Science New York, NY [u.a.] (DE-627)ELV005250781 volume:255 year:2020 day:15 month:11 pages:0 https://doi.org/10.1016/j.matchemphys.2020.123584 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.38 Pharmakologie VZ 44.91 Psychiatrie Psychopathologie VZ AR 255 2020 15 1115 0 |
allfieldsGer |
10.1016/j.matchemphys.2020.123584 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001155.pica (DE-627)ELV05150328X (ELSEVIER)S0254-0584(20)30948-2 DE-627 ger DE-627 rakwb eng 610 VZ 44.38 bkl 44.91 bkl Remya, R. verfasserin aut Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. Hole transporting layer (HTL) Elsevier Polymer solar cell Elsevier Hydrated tungsten trioxide Elsevier Gayathri, P.T.G. oth Deb, Biswapriya oth Enthalten in Elsevier Lu, Li ELSEVIER Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving 2020 including materials science communications : an international, interdisciplinary journal on science characterization and processing of advanced materials : the international journal of the Chinese Society for Materials Science New York, NY [u.a.] (DE-627)ELV005250781 volume:255 year:2020 day:15 month:11 pages:0 https://doi.org/10.1016/j.matchemphys.2020.123584 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.38 Pharmakologie VZ 44.91 Psychiatrie Psychopathologie VZ AR 255 2020 15 1115 0 |
allfieldsSound |
10.1016/j.matchemphys.2020.123584 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001155.pica (DE-627)ELV05150328X (ELSEVIER)S0254-0584(20)30948-2 DE-627 ger DE-627 rakwb eng 610 VZ 44.38 bkl 44.91 bkl Remya, R. verfasserin aut Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. Hole transporting layer (HTL) Elsevier Polymer solar cell Elsevier Hydrated tungsten trioxide Elsevier Gayathri, P.T.G. oth Deb, Biswapriya oth Enthalten in Elsevier Lu, Li ELSEVIER Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving 2020 including materials science communications : an international, interdisciplinary journal on science characterization and processing of advanced materials : the international journal of the Chinese Society for Materials Science New York, NY [u.a.] (DE-627)ELV005250781 volume:255 year:2020 day:15 month:11 pages:0 https://doi.org/10.1016/j.matchemphys.2020.123584 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.38 Pharmakologie VZ 44.91 Psychiatrie Psychopathologie VZ AR 255 2020 15 1115 0 |
language |
English |
source |
Enthalten in Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving New York, NY [u.a.] volume:255 year:2020 day:15 month:11 pages:0 |
sourceStr |
Enthalten in Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving New York, NY [u.a.] volume:255 year:2020 day:15 month:11 pages:0 |
format_phy_str_mv |
Article |
bklname |
Pharmakologie Psychiatrie Psychopathologie |
institution |
findex.gbv.de |
topic_facet |
Hole transporting layer (HTL) Polymer solar cell Hydrated tungsten trioxide |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving |
authorswithroles_txt_mv |
Remya, R. @@aut@@ Gayathri, P.T.G. @@oth@@ Deb, Biswapriya @@oth@@ |
publishDateDaySort_date |
2020-01-15T00:00:00Z |
hierarchy_top_id |
ELV005250781 |
dewey-sort |
3610 |
id |
ELV05150328X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05150328X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626032110.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matchemphys.2020.123584</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001155.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05150328X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0254-0584(20)30948-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.91</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Remya, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hole transporting layer (HTL)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polymer solar cell</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrated tungsten trioxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gayathri, P.T.G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deb, Biswapriya</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Lu, Li ELSEVIER</subfield><subfield code="t">Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving</subfield><subfield code="d">2020</subfield><subfield code="d">including materials science communications : an international, interdisciplinary journal on science characterization and processing of advanced materials : the international journal of the Chinese Society for Materials Science</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV005250781</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:255</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:15</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matchemphys.2020.123584</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.38</subfield><subfield code="j">Pharmakologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.91</subfield><subfield code="j">Psychiatrie</subfield><subfield code="j">Psychopathologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">255</subfield><subfield code="j">2020</subfield><subfield code="b">15</subfield><subfield code="c">1115</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Remya, R. |
spellingShingle |
Remya, R. ddc 610 bkl 44.38 bkl 44.91 Elsevier Hole transporting layer (HTL) Elsevier Polymer solar cell Elsevier Hydrated tungsten trioxide Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells |
authorStr |
Remya, R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV005250781 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.38 bkl 44.91 bkl Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells Hole transporting layer (HTL) Elsevier Polymer solar cell Elsevier Hydrated tungsten trioxide Elsevier |
topic |
ddc 610 bkl 44.38 bkl 44.91 Elsevier Hole transporting layer (HTL) Elsevier Polymer solar cell Elsevier Hydrated tungsten trioxide |
topic_unstemmed |
ddc 610 bkl 44.38 bkl 44.91 Elsevier Hole transporting layer (HTL) Elsevier Polymer solar cell Elsevier Hydrated tungsten trioxide |
topic_browse |
ddc 610 bkl 44.38 bkl 44.91 Elsevier Hole transporting layer (HTL) Elsevier Polymer solar cell Elsevier Hydrated tungsten trioxide |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
p g pg b d bd |
hierarchy_parent_title |
Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving |
hierarchy_parent_id |
ELV005250781 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV005250781 |
title |
Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells |
ctrlnum |
(DE-627)ELV05150328X (ELSEVIER)S0254-0584(20)30948-2 |
title_full |
Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells |
author_sort |
Remya, R. |
journal |
Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving |
journalStr |
Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Remya, R. |
container_volume |
255 |
class |
610 VZ 44.38 bkl 44.91 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Remya, R. |
doi_str_mv |
10.1016/j.matchemphys.2020.123584 |
dewey-full |
610 |
title_sort |
studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells |
title_auth |
Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells |
abstract |
Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. |
abstractGer |
Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. |
abstract_unstemmed |
Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells |
url |
https://doi.org/10.1016/j.matchemphys.2020.123584 |
remote_bool |
true |
author2 |
Gayathri, P.T.G. Deb, Biswapriya |
author2Str |
Gayathri, P.T.G. Deb, Biswapriya |
ppnlink |
ELV005250781 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth |
doi_str |
10.1016/j.matchemphys.2020.123584 |
up_date |
2024-07-06T20:26:42.335Z |
_version_ |
1803862778666024960 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05150328X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626032110.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.matchemphys.2020.123584</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001155.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05150328X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0254-0584(20)30948-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.91</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Remya, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Studies on solution-processed tungsten oxide nanostructures for efficient hole transport in the inverted polymer solar cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electron/hole transporting interlayer films are vital to photovoltaic devices for enhancing both efficiency and stability. The acidic nature of the standard anode buffer layer (or hole transport layer; HTL) PEDOT:PSS limits the stability of inverted polymer solar cells (IPSCs). High-quality inorganic substitutes for PEDOT:PSS usually needs vacuum deposition and therefore are not preferred choice for the large-scale and low-cost production of IPSCs. Here, we fabricated highly efficient and stable IPSCs with solution-processed tungsten oxide (WO3) anode buffer layer as an alternative. The effect of acidity over device stability was compared with WO3 nanostructures in different solvents. We fabricated IPSCs without encapsulation using both standard P3HT:PC61BM and low-bandgap polymer PTB7:PC71BM bulk heterojunction (BHJ) with acidic (WO3 nanoparticle; WNP) and neutral (WO3 nanosheets; WNS) anodic buffer layers. Cells fabricated with WNS layer exhibit ~11% (η = 5.1%) and ~15% (η = 7.8%) enhancements in the PCE for P3HT:PC61BM and PTB7:PC71BM bulk heterojunction (BHJ) respectively, compared to the standard cells made with PEDOT:PSS. Also, this is the first report where a WNS and P3HT:PC61BM blend is used as the anode buffer layer that yields the highest efficiency of ~5.1% with excellent air stability of ~240 h without encapsulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hole transporting layer (HTL)</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polymer solar cell</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hydrated tungsten trioxide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gayathri, P.T.G.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deb, Biswapriya</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier</subfield><subfield code="a">Lu, Li ELSEVIER</subfield><subfield code="t">Road traffic crash characteristics of drivers who take prescription medicines that carry a risk to driving</subfield><subfield code="d">2020</subfield><subfield code="d">including materials science communications : an international, interdisciplinary journal on science characterization and processing of advanced materials : the international journal of the Chinese Society for Materials Science</subfield><subfield code="g">New York, NY [u.a.]</subfield><subfield code="w">(DE-627)ELV005250781</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:255</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:15</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.matchemphys.2020.123584</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.38</subfield><subfield code="j">Pharmakologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.91</subfield><subfield code="j">Psychiatrie</subfield><subfield code="j">Psychopathologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">255</subfield><subfield code="j">2020</subfield><subfield code="b">15</subfield><subfield code="c">1115</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.402856 |