CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders
This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape character...
Ausführliche Beschreibung
Autor*in: |
Longo, S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol - Ide, C.V. ELSEVIER, 2017, a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics, Amsterdam |
---|---|
Übergeordnetes Werk: |
volume:982 ; year:2020 ; day:1 ; month:12 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.nima.2020.164562 |
---|
Katalog-ID: |
ELV05172314X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV05172314X | ||
003 | DE-627 | ||
005 | 20230626032357.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nima.2020.164562 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001171.pica |
035 | |a (DE-627)ELV05172314X | ||
035 | |a (ELSEVIER)S0168-9002(20)30959-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q VZ |
084 | |a 44.90 |2 bkl | ||
100 | 1 | |a Longo, S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders |
264 | 1 | |c 2020transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. | ||
520 | |a This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. | ||
650 | 7 | |a Belle II |2 Elsevier | |
650 | 7 | |a Thallium doped cesium iodide |2 Elsevier | |
650 | 7 | |a Particle identification |2 Elsevier | |
650 | 7 | |a Calorimeters |2 Elsevier | |
650 | 7 | |a Pulse shape discrimination |2 Elsevier | |
650 | 7 | |a GEANT4 |2 Elsevier | |
700 | 1 | |a Roney, J.M. |4 oth | |
700 | 1 | |a Cecchi, C. |4 oth | |
700 | 1 | |a Cunliffe, S. |4 oth | |
700 | 1 | |a Ferber, T. |4 oth | |
700 | 1 | |a Hayashii, H. |4 oth | |
700 | 1 | |a Hearty, C. |4 oth | |
700 | 1 | |a Hershenhorn, A. |4 oth | |
700 | 1 | |a Kuzmin, A. |4 oth | |
700 | 1 | |a Manoni, E. |4 oth | |
700 | 1 | |a Meier, F. |4 oth | |
700 | 1 | |a Miyabayashi, K. |4 oth | |
700 | 1 | |a Nakamura, I. |4 oth | |
700 | 1 | |a Remnev, M. |4 oth | |
700 | 1 | |a Sibidanov, A. |4 oth | |
700 | 1 | |a Unno, Y. |4 oth | |
700 | 1 | |a Usov, Y. |4 oth | |
700 | 1 | |a Zhulanov, V. |4 oth | |
773 | 0 | 8 | |i Enthalten in |n North-Holland Publ. Co |a Ide, C.V. ELSEVIER |t The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |d 2017 |d a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics |g Amsterdam |w (DE-627)ELV000874671 |
773 | 1 | 8 | |g volume:982 |g year:2020 |g day:1 |g month:12 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.nima.2020.164562 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a SSG-OLC-PHA | ||
936 | b | k | |a 44.90 |j Neurologie |q VZ |
951 | |a AR | ||
952 | |d 982 |j 2020 |b 1 |c 1201 |h 0 |
author_variant |
s l sl |
---|---|
matchkey_str |
longosroneyjmcecchiccunliffesferberthaya:2020----:stplehpdsrmntowtteelieetoantcaoieeaaoemtotipoeatcedn |
hierarchy_sort_str |
2020transfer abstract |
bklnumber |
44.90 |
publishDate |
2020 |
allfields |
10.1016/j.nima.2020.164562 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001171.pica (DE-627)ELV05172314X (ELSEVIER)S0168-9002(20)30959-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Longo, S. verfasserin aut CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. Belle II Elsevier Thallium doped cesium iodide Elsevier Particle identification Elsevier Calorimeters Elsevier Pulse shape discrimination Elsevier GEANT4 Elsevier Roney, J.M. oth Cecchi, C. oth Cunliffe, S. oth Ferber, T. oth Hayashii, H. oth Hearty, C. oth Hershenhorn, A. oth Kuzmin, A. oth Manoni, E. oth Meier, F. oth Miyabayashi, K. oth Nakamura, I. oth Remnev, M. oth Sibidanov, A. oth Unno, Y. oth Usov, Y. oth Zhulanov, V. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:982 year:2020 day:1 month:12 pages:0 https://doi.org/10.1016/j.nima.2020.164562 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 982 2020 1 1201 0 |
spelling |
10.1016/j.nima.2020.164562 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001171.pica (DE-627)ELV05172314X (ELSEVIER)S0168-9002(20)30959-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Longo, S. verfasserin aut CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. Belle II Elsevier Thallium doped cesium iodide Elsevier Particle identification Elsevier Calorimeters Elsevier Pulse shape discrimination Elsevier GEANT4 Elsevier Roney, J.M. oth Cecchi, C. oth Cunliffe, S. oth Ferber, T. oth Hayashii, H. oth Hearty, C. oth Hershenhorn, A. oth Kuzmin, A. oth Manoni, E. oth Meier, F. oth Miyabayashi, K. oth Nakamura, I. oth Remnev, M. oth Sibidanov, A. oth Unno, Y. oth Usov, Y. oth Zhulanov, V. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:982 year:2020 day:1 month:12 pages:0 https://doi.org/10.1016/j.nima.2020.164562 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 982 2020 1 1201 0 |
allfields_unstemmed |
10.1016/j.nima.2020.164562 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001171.pica (DE-627)ELV05172314X (ELSEVIER)S0168-9002(20)30959-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Longo, S. verfasserin aut CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. Belle II Elsevier Thallium doped cesium iodide Elsevier Particle identification Elsevier Calorimeters Elsevier Pulse shape discrimination Elsevier GEANT4 Elsevier Roney, J.M. oth Cecchi, C. oth Cunliffe, S. oth Ferber, T. oth Hayashii, H. oth Hearty, C. oth Hershenhorn, A. oth Kuzmin, A. oth Manoni, E. oth Meier, F. oth Miyabayashi, K. oth Nakamura, I. oth Remnev, M. oth Sibidanov, A. oth Unno, Y. oth Usov, Y. oth Zhulanov, V. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:982 year:2020 day:1 month:12 pages:0 https://doi.org/10.1016/j.nima.2020.164562 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 982 2020 1 1201 0 |
allfieldsGer |
10.1016/j.nima.2020.164562 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001171.pica (DE-627)ELV05172314X (ELSEVIER)S0168-9002(20)30959-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Longo, S. verfasserin aut CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. Belle II Elsevier Thallium doped cesium iodide Elsevier Particle identification Elsevier Calorimeters Elsevier Pulse shape discrimination Elsevier GEANT4 Elsevier Roney, J.M. oth Cecchi, C. oth Cunliffe, S. oth Ferber, T. oth Hayashii, H. oth Hearty, C. oth Hershenhorn, A. oth Kuzmin, A. oth Manoni, E. oth Meier, F. oth Miyabayashi, K. oth Nakamura, I. oth Remnev, M. oth Sibidanov, A. oth Unno, Y. oth Usov, Y. oth Zhulanov, V. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:982 year:2020 day:1 month:12 pages:0 https://doi.org/10.1016/j.nima.2020.164562 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 982 2020 1 1201 0 |
allfieldsSound |
10.1016/j.nima.2020.164562 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001171.pica (DE-627)ELV05172314X (ELSEVIER)S0168-9002(20)30959-1 DE-627 ger DE-627 rakwb eng 610 VZ 44.90 bkl Longo, S. verfasserin aut CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders 2020transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. Belle II Elsevier Thallium doped cesium iodide Elsevier Particle identification Elsevier Calorimeters Elsevier Pulse shape discrimination Elsevier GEANT4 Elsevier Roney, J.M. oth Cecchi, C. oth Cunliffe, S. oth Ferber, T. oth Hayashii, H. oth Hearty, C. oth Hershenhorn, A. oth Kuzmin, A. oth Manoni, E. oth Meier, F. oth Miyabayashi, K. oth Nakamura, I. oth Remnev, M. oth Sibidanov, A. oth Unno, Y. oth Usov, Y. oth Zhulanov, V. oth Enthalten in North-Holland Publ. Co Ide, C.V. ELSEVIER The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol 2017 a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics Amsterdam (DE-627)ELV000874671 volume:982 year:2020 day:1 month:12 pages:0 https://doi.org/10.1016/j.nima.2020.164562 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA 44.90 Neurologie VZ AR 982 2020 1 1201 0 |
language |
English |
source |
Enthalten in The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol Amsterdam volume:982 year:2020 day:1 month:12 pages:0 |
sourceStr |
Enthalten in The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol Amsterdam volume:982 year:2020 day:1 month:12 pages:0 |
format_phy_str_mv |
Article |
bklname |
Neurologie |
institution |
findex.gbv.de |
topic_facet |
Belle II Thallium doped cesium iodide Particle identification Calorimeters Pulse shape discrimination GEANT4 |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
authorswithroles_txt_mv |
Longo, S. @@aut@@ Roney, J.M. @@oth@@ Cecchi, C. @@oth@@ Cunliffe, S. @@oth@@ Ferber, T. @@oth@@ Hayashii, H. @@oth@@ Hearty, C. @@oth@@ Hershenhorn, A. @@oth@@ Kuzmin, A. @@oth@@ Manoni, E. @@oth@@ Meier, F. @@oth@@ Miyabayashi, K. @@oth@@ Nakamura, I. @@oth@@ Remnev, M. @@oth@@ Sibidanov, A. @@oth@@ Unno, Y. @@oth@@ Usov, Y. @@oth@@ Zhulanov, V. @@oth@@ |
publishDateDaySort_date |
2020-01-01T00:00:00Z |
hierarchy_top_id |
ELV000874671 |
dewey-sort |
3610 |
id |
ELV05172314X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05172314X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626032357.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2020.164562</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001171.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05172314X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(20)30959-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Longo, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Belle II</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thallium doped cesium iodide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Particle identification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calorimeters</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pulse shape discrimination</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GEANT4</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roney, J.M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cecchi, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cunliffe, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferber, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hayashii, H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hearty, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hershenhorn, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuzmin, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manoni, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meier, F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miyabayashi, K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakamura, I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Remnev, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sibidanov, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Unno, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Usov, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhulanov, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ. Co</subfield><subfield code="a">Ide, C.V. ELSEVIER</subfield><subfield code="t">The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol</subfield><subfield code="d">2017</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000874671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:982</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nima.2020.164562</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">982</subfield><subfield code="j">2020</subfield><subfield code="b">1</subfield><subfield code="c">1201</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Longo, S. |
spellingShingle |
Longo, S. ddc 610 bkl 44.90 Elsevier Belle II Elsevier Thallium doped cesium iodide Elsevier Particle identification Elsevier Calorimeters Elsevier Pulse shape discrimination Elsevier GEANT4 CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders |
authorStr |
Longo, S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV000874671 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
610 VZ 44.90 bkl CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders Belle II Elsevier Thallium doped cesium iodide Elsevier Particle identification Elsevier Calorimeters Elsevier Pulse shape discrimination Elsevier GEANT4 Elsevier |
topic |
ddc 610 bkl 44.90 Elsevier Belle II Elsevier Thallium doped cesium iodide Elsevier Particle identification Elsevier Calorimeters Elsevier Pulse shape discrimination Elsevier GEANT4 |
topic_unstemmed |
ddc 610 bkl 44.90 Elsevier Belle II Elsevier Thallium doped cesium iodide Elsevier Particle identification Elsevier Calorimeters Elsevier Pulse shape discrimination Elsevier GEANT4 |
topic_browse |
ddc 610 bkl 44.90 Elsevier Belle II Elsevier Thallium doped cesium iodide Elsevier Particle identification Elsevier Calorimeters Elsevier Pulse shape discrimination Elsevier GEANT4 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
j r jr c c cc s c sc t f tf h h hh c h ch a h ah a k ak e m em f m fm k m km i n in m r mr a s as y u yu y u yu v z vz |
hierarchy_parent_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
hierarchy_parent_id |
ELV000874671 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV000874671 |
title |
CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders |
ctrlnum |
(DE-627)ELV05172314X (ELSEVIER)S0168-9002(20)30959-1 |
title_full |
CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders |
author_sort |
Longo, S. |
journal |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
journalStr |
The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Longo, S. |
container_volume |
982 |
class |
610 VZ 44.90 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Longo, S. |
doi_str_mv |
10.1016/j.nima.2020.164562 |
dewey-full |
610 |
title_sort |
csi(tl) pulse shape discrimination with the belle ii electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders |
title_auth |
CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders |
abstract |
This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. |
abstractGer |
This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. |
abstract_unstemmed |
This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U SSG-OLC-PHA |
title_short |
CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders |
url |
https://doi.org/10.1016/j.nima.2020.164562 |
remote_bool |
true |
author2 |
Roney, J.M. Cecchi, C. Cunliffe, S. Ferber, T. Hayashii, H. Hearty, C. Hershenhorn, A. Kuzmin, A. Manoni, E. Meier, F. Miyabayashi, K. Nakamura, I. Remnev, M. Sibidanov, A. Unno, Y. Usov, Y. Zhulanov, V. |
author2Str |
Roney, J.M. Cecchi, C. Cunliffe, S. Ferber, T. Hayashii, H. Hearty, C. Hershenhorn, A. Kuzmin, A. Manoni, E. Meier, F. Miyabayashi, K. Nakamura, I. Remnev, M. Sibidanov, A. Unno, Y. Usov, Y. Zhulanov, V. |
ppnlink |
ELV000874671 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth oth |
doi_str |
10.1016/j.nima.2020.164562 |
up_date |
2024-07-06T21:03:12.535Z |
_version_ |
1803865075257180160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV05172314X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626032357.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nima.2020.164562</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001171.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV05172314X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-9002(20)30959-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Longo, S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CsI(Tl) pulse shape discrimination with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron–positron colliders</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper describes the implementation and performance of CsI(Tl) pulse shape discrimination for the Belle II electromagnetic calorimeter, representing the first application of CsI(Tl) pulse shape discrimination for particle identification at an electron–positron collider. The pulse shape characterization algorithms applied by the Belle II calorimeter are described. Control samples of γ , μ + , π ± , K ± and p ∕ p ̄ are used to demonstrate the significant insight into the secondary particle composition of calorimeter clusters that is provided by CsI(Tl) pulse shape discrimination. Comparisons with simulation are presented and provide further validation for newly developed CsI(Tl) scintillation response simulation techniques, which when incorporated with GEANT4 simulations allow the particle dependent scintillation response of CsI(Tl) to be modelled. Comparisons between data and simulation also demonstrate that pulse shape discrimination can be a new tool to identify sources of improvement in the simulation of hadronic interactions in materials. The K L 0 efficiency and photon-as-hadron fake-rate of a multivariate classifier that is trained to use pulse shape discrimination is presented and comparisons are made to a shower-shape based approach. CsI(Tl) pulse shape discrimination is shown to reduce the photon-as-hadron fake-rate by over a factor of 3 at photon energies of 0.2 GeV and over a factor 10 at photon energies of 1 GeV.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Belle II</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Thallium doped cesium iodide</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Particle identification</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calorimeters</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Pulse shape discrimination</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">GEANT4</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roney, J.M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cecchi, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cunliffe, S.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferber, T.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hayashii, H.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hearty, C.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hershenhorn, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuzmin, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manoni, E.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meier, F.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Miyabayashi, K.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakamura, I.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Remnev, M.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sibidanov, A.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Unno, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Usov, Y.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhulanov, V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">North-Holland Publ. Co</subfield><subfield code="a">Ide, C.V. ELSEVIER</subfield><subfield code="t">The efficacy of EEG-biofeedback for acute pain management, a randomized sham-controlled study of a tailored protocol</subfield><subfield code="d">2017</subfield><subfield code="d">a journal on accelerators, instrumentation and techniques applied to research in nuclear and atomic physics, materials science and related fields in physics</subfield><subfield code="g">Amsterdam</subfield><subfield code="w">(DE-627)ELV000874671</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:982</subfield><subfield code="g">year:2020</subfield><subfield code="g">day:1</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.nima.2020.164562</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.90</subfield><subfield code="j">Neurologie</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">982</subfield><subfield code="j">2020</subfield><subfield code="b">1</subfield><subfield code="c">1201</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.4016743 |