Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution
• Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable clas...
Ausführliche Beschreibung
Autor*in: |
Wang, Wesley [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021transfer abstract |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Usage of formal financial services in India: Demand barriers or supply constraints? - Kumar, Abhishek ELSEVIER, 2018, Amsterdam [u.a.] |
---|---|
Übergeordnetes Werk: |
volume:283 ; year:2021 ; pages:0 |
Links: |
---|
DOI / URN: |
10.1016/j.resp.2020.103558 |
---|
Katalog-ID: |
ELV051970872 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV051970872 | ||
003 | DE-627 | ||
005 | 20230626032702.0 | ||
007 | cr uuu---uuuuu | ||
008 | 210910s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.resp.2020.103558 |2 doi | |
028 | 5 | 2 | |a /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica |
035 | |a (DE-627)ELV051970872 | ||
035 | |a (ELSEVIER)S1569-9048(20)30216-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |q VZ |
100 | 1 | |a Wang, Wesley |e verfasserin |4 aut | |
245 | 1 | 0 | |a Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution |
264 | 1 | |c 2021transfer abstract | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a nicht spezifiziert |b z |2 rdamedia | ||
338 | |a nicht spezifiziert |b zu |2 rdacarrier | ||
520 | |a • Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. | ||
520 | |a • Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. | ||
650 | 7 | |a TV |2 Elsevier | |
650 | 7 | |a f |2 Elsevier | |
700 | 1 | |a Alzate-Correa, Diego |4 oth | |
700 | 1 | |a Alves, Michele Joana |4 oth | |
700 | 1 | |a Jones, Mikayla |4 oth | |
700 | 1 | |a Garcia, Alfredo J. |4 oth | |
700 | 1 | |a Zhao, Jing |4 oth | |
700 | 1 | |a Czeisler, Catherine Miriam |4 oth | |
700 | 1 | |a Otero, José Javier |4 oth | |
773 | 0 | 8 | |i Enthalten in |n Elsevier Science |a Kumar, Abhishek ELSEVIER |t Usage of formal financial services in India: Demand barriers or supply constraints? |d 2018 |g Amsterdam [u.a.] |w (DE-627)ELV002357348 |
773 | 1 | 8 | |g volume:283 |g year:2021 |g pages:0 |
856 | 4 | 0 | |u https://doi.org/10.1016/j.resp.2020.103558 |3 Volltext |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
951 | |a AR | ||
952 | |d 283 |j 2021 |h 0 |
author_variant |
w w ww |
---|---|
matchkey_str |
wangwesleyalzatecorreadiegoalvesmichelej:2021----:ahnlannbsdaanltcprahsoeautnpsntlosrsi |
hierarchy_sort_str |
2021transfer abstract |
publishDate |
2021 |
allfields |
10.1016/j.resp.2020.103558 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica (DE-627)ELV051970872 (ELSEVIER)S1569-9048(20)30216-0 DE-627 ger DE-627 rakwb eng 330 VZ Wang, Wesley verfasserin aut Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. • Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. TV Elsevier f Elsevier Alzate-Correa, Diego oth Alves, Michele Joana oth Jones, Mikayla oth Garcia, Alfredo J. oth Zhao, Jing oth Czeisler, Catherine Miriam oth Otero, José Javier oth Enthalten in Elsevier Science Kumar, Abhishek ELSEVIER Usage of formal financial services in India: Demand barriers or supply constraints? 2018 Amsterdam [u.a.] (DE-627)ELV002357348 volume:283 year:2021 pages:0 https://doi.org/10.1016/j.resp.2020.103558 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 283 2021 0 |
spelling |
10.1016/j.resp.2020.103558 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica (DE-627)ELV051970872 (ELSEVIER)S1569-9048(20)30216-0 DE-627 ger DE-627 rakwb eng 330 VZ Wang, Wesley verfasserin aut Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. • Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. TV Elsevier f Elsevier Alzate-Correa, Diego oth Alves, Michele Joana oth Jones, Mikayla oth Garcia, Alfredo J. oth Zhao, Jing oth Czeisler, Catherine Miriam oth Otero, José Javier oth Enthalten in Elsevier Science Kumar, Abhishek ELSEVIER Usage of formal financial services in India: Demand barriers or supply constraints? 2018 Amsterdam [u.a.] (DE-627)ELV002357348 volume:283 year:2021 pages:0 https://doi.org/10.1016/j.resp.2020.103558 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 283 2021 0 |
allfields_unstemmed |
10.1016/j.resp.2020.103558 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica (DE-627)ELV051970872 (ELSEVIER)S1569-9048(20)30216-0 DE-627 ger DE-627 rakwb eng 330 VZ Wang, Wesley verfasserin aut Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. • Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. TV Elsevier f Elsevier Alzate-Correa, Diego oth Alves, Michele Joana oth Jones, Mikayla oth Garcia, Alfredo J. oth Zhao, Jing oth Czeisler, Catherine Miriam oth Otero, José Javier oth Enthalten in Elsevier Science Kumar, Abhishek ELSEVIER Usage of formal financial services in India: Demand barriers or supply constraints? 2018 Amsterdam [u.a.] (DE-627)ELV002357348 volume:283 year:2021 pages:0 https://doi.org/10.1016/j.resp.2020.103558 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 283 2021 0 |
allfieldsGer |
10.1016/j.resp.2020.103558 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica (DE-627)ELV051970872 (ELSEVIER)S1569-9048(20)30216-0 DE-627 ger DE-627 rakwb eng 330 VZ Wang, Wesley verfasserin aut Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. • Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. TV Elsevier f Elsevier Alzate-Correa, Diego oth Alves, Michele Joana oth Jones, Mikayla oth Garcia, Alfredo J. oth Zhao, Jing oth Czeisler, Catherine Miriam oth Otero, José Javier oth Enthalten in Elsevier Science Kumar, Abhishek ELSEVIER Usage of formal financial services in India: Demand barriers or supply constraints? 2018 Amsterdam [u.a.] (DE-627)ELV002357348 volume:283 year:2021 pages:0 https://doi.org/10.1016/j.resp.2020.103558 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 283 2021 0 |
allfieldsSound |
10.1016/j.resp.2020.103558 doi /cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica (DE-627)ELV051970872 (ELSEVIER)S1569-9048(20)30216-0 DE-627 ger DE-627 rakwb eng 330 VZ Wang, Wesley verfasserin aut Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution 2021transfer abstract nicht spezifiziert zzz rdacontent nicht spezifiziert z rdamedia nicht spezifiziert zu rdacarrier • Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. • Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. TV Elsevier f Elsevier Alzate-Correa, Diego oth Alves, Michele Joana oth Jones, Mikayla oth Garcia, Alfredo J. oth Zhao, Jing oth Czeisler, Catherine Miriam oth Otero, José Javier oth Enthalten in Elsevier Science Kumar, Abhishek ELSEVIER Usage of formal financial services in India: Demand barriers or supply constraints? 2018 Amsterdam [u.a.] (DE-627)ELV002357348 volume:283 year:2021 pages:0 https://doi.org/10.1016/j.resp.2020.103558 Volltext GBV_USEFLAG_U GBV_ELV SYSFLAG_U AR 283 2021 0 |
language |
English |
source |
Enthalten in Usage of formal financial services in India: Demand barriers or supply constraints? Amsterdam [u.a.] volume:283 year:2021 pages:0 |
sourceStr |
Enthalten in Usage of formal financial services in India: Demand barriers or supply constraints? Amsterdam [u.a.] volume:283 year:2021 pages:0 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
TV f |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
Usage of formal financial services in India: Demand barriers or supply constraints? |
authorswithroles_txt_mv |
Wang, Wesley @@aut@@ Alzate-Correa, Diego @@oth@@ Alves, Michele Joana @@oth@@ Jones, Mikayla @@oth@@ Garcia, Alfredo J. @@oth@@ Zhao, Jing @@oth@@ Czeisler, Catherine Miriam @@oth@@ Otero, José Javier @@oth@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
ELV002357348 |
dewey-sort |
3330 |
id |
ELV051970872 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051970872</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626032702.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.resp.2020.103558</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051970872</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1569-9048(20)30216-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Wesley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">f</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alzate-Correa, Diego</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alves, Michele Joana</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, Mikayla</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garcia, Alfredo J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Jing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Czeisler, Catherine Miriam</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Otero, José Javier</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Kumar, Abhishek ELSEVIER</subfield><subfield code="t">Usage of formal financial services in India: Demand barriers or supply constraints?</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002357348</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:283</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.resp.2020.103558</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">283</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
author |
Wang, Wesley |
spellingShingle |
Wang, Wesley ddc 330 Elsevier TV Elsevier f Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution |
authorStr |
Wang, Wesley |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)ELV002357348 |
format |
electronic Article |
dewey-ones |
330 - Economics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
330 VZ Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution TV Elsevier f Elsevier |
topic |
ddc 330 Elsevier TV Elsevier f |
topic_unstemmed |
ddc 330 Elsevier TV Elsevier f |
topic_browse |
ddc 330 Elsevier TV Elsevier f |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
zu |
author2_variant |
d a c dac m j a mj mja m j mj a j g aj ajg j z jz c m c cm cmc j j o jj jjo |
hierarchy_parent_title |
Usage of formal financial services in India: Demand barriers or supply constraints? |
hierarchy_parent_id |
ELV002357348 |
dewey-tens |
330 - Economics |
hierarchy_top_title |
Usage of formal financial services in India: Demand barriers or supply constraints? |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)ELV002357348 |
title |
Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution |
ctrlnum |
(DE-627)ELV051970872 (ELSEVIER)S1569-9048(20)30216-0 |
title_full |
Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution |
author_sort |
Wang, Wesley |
journal |
Usage of formal financial services in India: Demand barriers or supply constraints? |
journalStr |
Usage of formal financial services in India: Demand barriers or supply constraints? |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
0 |
author_browse |
Wang, Wesley |
container_volume |
283 |
class |
330 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Wesley |
doi_str_mv |
10.1016/j.resp.2020.103558 |
dewey-full |
330 |
title_sort |
machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution |
title_auth |
Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution |
abstract |
• Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. |
abstractGer |
• Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. |
abstract_unstemmed |
• Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U |
title_short |
Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution |
url |
https://doi.org/10.1016/j.resp.2020.103558 |
remote_bool |
true |
author2 |
Alzate-Correa, Diego Alves, Michele Joana Jones, Mikayla Garcia, Alfredo J. Zhao, Jing Czeisler, Catherine Miriam Otero, José Javier |
author2Str |
Alzate-Correa, Diego Alves, Michele Joana Jones, Mikayla Garcia, Alfredo J. Zhao, Jing Czeisler, Catherine Miriam Otero, José Javier |
ppnlink |
ELV002357348 |
mediatype_str_mv |
z |
isOA_txt |
false |
hochschulschrift_bool |
false |
author2_role |
oth oth oth oth oth oth oth |
doi_str |
10.1016/j.resp.2020.103558 |
up_date |
2024-07-06T21:44:50.547Z |
_version_ |
1803867694613659648 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV051970872</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230626032702.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">210910s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.resp.2020.103558</subfield><subfield code="2">doi</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">/cbs_pica/cbs_olc/import_discovery/elsevier/einzuspielen/GBV00000000001262.pica</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV051970872</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1569-9048(20)30216-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Wesley</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning-based data analytic approaches for evaluating post-natal mouse respiratory physiological evolution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021transfer abstract</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">z</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zu</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">• Machine learning-based data analytic approaches help uncover differences in ventilation at later post-natal ages that have not been well appreciated in the past. • Respiratory variability in breathing parameters are key characteristics that separate animals based on post-natal age. • Reliable class label prediction can be executed by machines utilizing data derived from plethysmography respiratory metrics using various learning pipelines. • The incorporation of machine learning in respiratory physiology is feasible and introduces stronger study rigor and objectivity while permitting high dimensional data analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TV</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">f</subfield><subfield code="2">Elsevier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alzate-Correa, Diego</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alves, Michele Joana</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, Mikayla</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garcia, Alfredo J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Jing</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Czeisler, Catherine Miriam</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Otero, José Javier</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="n">Elsevier Science</subfield><subfield code="a">Kumar, Abhishek ELSEVIER</subfield><subfield code="t">Usage of formal financial services in India: Demand barriers or supply constraints?</subfield><subfield code="d">2018</subfield><subfield code="g">Amsterdam [u.a.]</subfield><subfield code="w">(DE-627)ELV002357348</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:283</subfield><subfield code="g">year:2021</subfield><subfield code="g">pages:0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1016/j.resp.2020.103558</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">283</subfield><subfield code="j">2021</subfield><subfield code="h">0</subfield></datafield></record></collection>
|
score |
7.401162 |